Package base: The standard theory library

Information

namebase
version1.81
descriptionThe standard theory library
authorJoe Hurd <joe@gilith.com>
licenseMIT
showData.Bool
Data.List
Data.Option
Data.Pair
Data.Sum
Data.Unit
Function
Number.Natural
Number.Real as Real
Relation
Set

Files

Defined Type Operators

Defined Constants

Theorems

null []

isNone none

irreflexive empty

irreflexive isSuc

reflexive universe

transitive empty

transitive universe

transitive (<)

wellFounded empty

wellFounded (<)

wellFounded isSuc

finite

finite universe

infinite universe

¬isSome none

subrelation isSuc (<)

id = λx. x

¬(universe = )

K = λx y. x

empty = fromSet

universe = fromSet universe

¬

¬

even 0

odd 0

length [] = 0

bit0 0 = 0

size = 0

concat [] = []

nubReverse [] = []

reverse [] = []

toSet [] =

bigIntersect = universe

bigUnion =

transitiveClosure isSuc = (<)

map id = id

a. isSome (some a)

x. x = x

x. x universe

t. t t

v. v = ()

n. 0 n

n. n n

x. Real.≤ x x

l. finite (toSet l)

s. disjoint s

s. disjoint s

s. s

s. s universe

s. s s

p. all p []

m. wellFounded (measure m)

r. transitive (transitiveClosure r)

r. subrelation r r

p. p

fromPredicate (λx. ) =

l. all (λx. ) l

hasSize universe 2

factorial 0 = 1

a. ¬isNone (some a)

x. ¬member x []

x. ¬(x )

a. finite (insert a )

x. id x = x

t. t ¬t

n. ¬(n < n)

n. 0 < suc n

n. n < suc n

n. n suc n

s. ¬(universe s)

s. ¬(s )

s. ¬(s s)

p. ¬exists p []

r. subrelation r (transitiveClosure r)

(¬) = λp. p

() = λp. p ((select) p)

x y. universe x y

a. x. x = a

a. ∃!x. x = a

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

f g. f = g

(λp. p) = λp. p

() = λp. p = λx.

W = λf x. f x x

a'. ¬(none = some a')

x. destLeft (left x) = x

x. replicate 0 x = []

x. delete x =

x. insert x universe = universe

y. destRight (right y) = y

t. ¬¬t t

t. ( t) t

t. (t ) t

t. t

t. t t

t. t

t. t t

t. t t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t t

n. ¬(factorial n = 0)

n. ¬(suc n = 0)

n. n n * n

n. even n odd n

m. m < 0

n. pre (suc n) = n

n. 0 * n = 0

m. m * 0 = 0

n. 0 + n = n

m. m + 0 = m

m. m - 0 = m

n. n - n = 0

n. distance 0 n = n

n. distance n 0 = n

n. distance n n = 0

n. max 0 n = n

n. max n 0 = n

n. max n n = n

n. min 0 n = 0

n. min n 0 = 0

n. min n n = n

m. interval m 0 = []

l. reverse (reverse l) = l

l. [] @ l = l

l. l @ [] = l

l. drop 0 l = l

l. take 0 l = []

s. \ s =

s. s \ = s

s. s \ universe =

s. s \ s =

s. image id s = s

s. s =

s. universe s = s

s. s =

s. s universe = s

s. s s = s

s. s = s

s. universe s = universe

s. s = s

s. s universe = universe

s. s s = s

f. map f [] = []

f. image f =

x. S K x = id

f. f id = f

f. id f = f

P. filter P [] = []

s. toSet (fromSet s) = s

r. wellFounded r irreflexive r

f. C (C f) = f

r. fromSet (toSet r) = r

() = λf g x. f (g x)

C = λf x y. f y x

x y. ¬empty x y

e. fn. fn () = e

e. ∃!fn. fn () = e

l. map (λx. x) l = l

s. image (λx. x) s = s

universe = insert (insert )

size = fold (λx n. suc n) 0

t1 t2. (let x t2 in t1) = t1

x. hasSize (insert x ) 1

h. last (h :: []) = h

t. ( t) ¬t

t. (t ) ¬t

t. t ¬t

n. ¬(even n odd n)

n. even (2 * n)

n. bit1 n = suc (bit0 n)

n. ¬even n odd n

n. ¬odd n even n

m. m ^ 0 = 1

m. m * 1 = m

n. n ^ 1 = n

n. n div 1 = n

n. n mod 1 = 0

m. 1 * m = m

x. Real.+ 0 x = x

l. null l l = []

l. length (reverse l) = length l

l. nub (nub l) = nub l

l. nubReverse (nubReverse l) = nubReverse l

l. toSet (nub l) = toSet l

l. toSet (nubReverse l) = toSet l

l. toSet (reverse l) = toSet l

l. length (nub l) length l

l. length (nubReverse l) length l

l. size (toSet l) length l

l. drop (length l) l = []

l. take (length l) l = l

l. case [] (::) l = l

l. foldr (::) [] l = l

x. case none some x = x

s. infinite s ¬finite s

s. bigIntersect (insert s ) = s

s. bigUnion (insert s ) = s

f. zipWith f [] [] = []

f. injective f ¬surjective f

S = λf g x. f x (g x)

x y. K x y = x

h t. ¬null (h :: t)

x s. x insert x s

x s. delete s x s

x. (select y. y = x) = x

m n. m m + n

m n. m max m n

m n. n m + n

m n. n max m n

m n. min m n m

m n. min m n n

s t. disjoint s (t \ s)

s t. s s t

s t. s t s

s t. disjoint (t \ s) s

s t. s \ t s

s t. s t s

s t. t s s

p. p () x. p x

() = λp q. p q p

x. size (insert x ) = 1

t. (t ) (t )

n. odd (suc (2 * n))

m. suc m = m + 1

n. even (suc n) ¬even n

n. odd (suc n) ¬odd n

m. m 0 m = 0

n. 1 ^ n = 1

n. suc n - 1 = n

x. Real.^ x 0 = 1

x. Real.+ (Real.~ x) x = 0

x. Real.* 1 x = x

l. nub l = reverse (nubReverse (reverse l))

s. finite s hasSize s (size s)

s. rest s = delete s (choice s)

s. infinite s ¬(s = )

s. disjoint s s s =

s. hasSize s 0 s =

s. universe s s = universe

s. s s =

l. null (concat l) all null l

xy. (fst xy, snd xy) = xy

t1 t2. (if then t1 else t2) = t2

t1 t2. (if then t1 else t2) = t1

x y. fst (x, y) = x

x y. snd (x, y) = y

h t. ¬(h :: t = [])

h t. head (h :: t) = h

h t. tail (h :: t) = t

x s. ¬(insert x s = )

b f. case b f none = b

b f. case b f [] = b

b t. (if b then t else t) = t

n x. length (replicate n x) = n

m n. length (interval m n) = n

p x. p x p ((select) p)

r x. reflexive r r x x

r. reflexive r x. r x x

f b. foldr f b [] = b

f b. foldl f b [] = b

n. 0 < n ¬(n = 0)

n. bit0 (suc n) = suc (suc (bit0 n))

l. length l = 0 l = []

l. toSet l = l = []

l. foldl (C (::)) [] l = reverse l

s. finite s toSet (fromSet s) = s

f y. (let x y in f x) = f y

xy. x y. xy = (x, y)

s. bigIntersect s = fromSet (bigIntersect (image toSet s))

s. bigUnion s = fromSet (bigUnion (image toSet s))

x y. x = y y = x

x y. x = y y = x

h t. nth 0 (h :: t) = h

x s. finite s finite (insert x s)

t1 t2. t1 t2 t2 t1

t1 t2. t1 t2 t2 t1

a b. (a b) a b

m n. m > n n < m

m n. m n n m

m n. m * n = n * m

m n. m + n = n + m

m n. distance m n = distance n m

m n. max m n = max n m

m n. min m n = min n m

m n. m = n m n

m n. m < n m n

m n. m < n n m

m n. m n n < m

m n. m n n m

m n. distance m n m + n

m n. distance m (m + n) = n

m n. m + n - m = n

m n. m + n - n = m

m n. distance (m + n) m = n

m n. n * (m div n) m

x y. Real.> x y Real.< y x

x y. Real.≥ x y Real.≤ y x

x y. Real.* x y = Real.* y x

x y. Real.+ x y = Real.+ y x

x y. Real.≤ x y Real.≤ y x

l f. length (map f l) = length l

s x. finite s finite (delete s x)

s x. finite (delete s x) finite s

s x. finite (insert x s) finite s

s t. finite s finite (s \ t)

s t. disjoint s t disjoint t s

s t. s t = t s

s t. s t = t s

s. (x. x s) s = universe

s. finite s a. ¬(a s)

f s. finite s finite (image f s)

p x. x fromPredicate p p x

p l. length (filter p l) length l

p l. toSet (filter p l) toSet l

f x. W f x = f x x

r x. irreflexive r ¬r x x

r. irreflexive r x. ¬r x x

= { x. x | }

universe = { x. x | }

n. factorial (suc n) = suc n * factorial n

n. n ^ 2 = n * n

n. 2 * n = n + n

s. finite s length (fromSet s) = size s

s. ¬(s = ) choice s s

x l. member x l x toSet l

h t. length (h :: t) = suc (length t)

m n. ¬(m < n n < m)

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. isSuc m n suc m = n

m n. ¬(m < n) n m

m n. ¬(m n) n < m

m n. m < suc n m n

m n. suc m n m < n

m. m = 0 n. m = suc n

x y. Real.< x y ¬Real.≤ y x

x y. Real.- x y = Real.+ x (Real.~ y)

l x. member x (nub l) member x l

l x. member x (nubReverse l) member x l

l x. member x (reverse l) member x l

l1 l2. foldr (::) l2 l1 = l1 @ l2

x. x = none a. x = some a

s n. hasSize s n size s = n

s. singleton s x. s = insert x

s. s universe x. ¬(x s)

s. (x. x s) ¬(s = )

p. (b. p b) p p

p. (b. p b) p p

p. p p x. p x

() = λp q. (λf. f p q) = λf. f

n. even n n mod 2 = 0

n. ¬(n = 0) 0 div n = 0

n. ¬(n = 0) 0 mod n = 0

n. ¬(n = 0) n mod n = 0

l. ¬(l = []) last l toSet l

f. surjective f y. x. y = f x

p. (x. ¬p x) ¬x. p x

p. (x. ¬p x) ¬x. p x

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

r. subrelation isSuc r transitive r subrelation (<) r

() = λp. q. (x. p x q) q

x y. x insert y x = y

a a'. some a = some a' a = a'

h t. toSet (h :: t) = insert h (toSet t)

x s. x s insert x s = s

x s. s \ insert x = delete s x

x s. insert x (insert x s) = insert x s

x s. delete (delete s x) x = delete s x

x s. insert x s = insert x s

p q. (q p) ¬p ¬q

t1 t2. ¬(t1 t2) t1 ¬t2

t1 t2. (¬t1 ¬t2) t1 t2

t1 t2. ¬t1 ¬t2 t2 t1

m n. m < n m div n = 0

m n. m < n m mod n = m

m n. m n factorial m factorial n

m n. m + suc n = suc (m + n)

m n. suc m + n = suc (m + n)

m n. m < m + n 0 < n

m n. n < m + n 0 < m

m n. suc m = suc n m = n

m n. Real.fromNatural m = Real.fromNatural n m = n

m n. suc m < suc n m < n

m n. suc m suc n m n

m n. Real.≤ (Real.fromNatural m) (Real.fromNatural n) m n

m n. m + n = m n = 0

m n. m + n = n m = 0

m n. distance m n = 0 m = n

m n. distance (suc m) (suc n) = distance m n

h t. concat (h :: t) = h @ concat t

s x. insert x s x s

s t. disjoint s t s t =

s t. s t s t = s

s t. s t s t = t

s t. s \ t = s t

s t. s \ t = s disjoint s t

s t. t (s \ t) = t s

s t. s \ t \ t = s \ t

s t. s \ t t = s t

s t. finite t s t finite s

s u. bigIntersect (insert s u) = s bigIntersect u

s u. bigUnion (insert s u) = s bigUnion u

f l. reverse (map f l) = map f (reverse l)

f l. toSet (map f l) = image f (toSet l)

f l. map f l = [] l = []

f s. image f s = s =

f g. f g bigIntersect g bigIntersect f

f g. f g bigUnion f bigUnion g

r s. subrelation r s wellFounded s wellFounded r

r s. subrelation r s toSet r toSet s

r s. toSet r = toSet s r = s

{ m. m | m < 0 } =

b f a. case b f (some a) = f a

n. finite { m. m | m < n }

n. finite { m. m | m n }

n. odd n n mod 2 = 1

n. 0 ^ n = if n = 0 then 1 else 0

n. ¬(n = 0) n div n = 1

x. Real.abs x = if Real.≤ 0 x then x else Real.~ x

s. finite s (size s = 0 s = )

f g x. (f g) x = f (g x)

f x y. C f x y = f y x

x n. replicate (suc n) x = x :: replicate n x

x s. disjoint s (insert x ) ¬(x s)

x s. delete s x = s ¬(x s)

x s. disjoint (insert x ) s ¬(x s)

t1 t2. ¬(t1 t2) ¬t1 ¬t2

t1 t2. ¬(t1 t2) ¬t1 ¬t2

m n. max m n = if m n then n else m

m n. min m n = if m n then m else n

m n. even (m * n) even m even n

m n. even (m + n) even m even n

m n. odd (m * n) odd m odd n

m n. m * suc n = m + m * n

m n. m ^ suc n = m * m ^ n

m n. suc m * n = m * n + n

m n. ¬(n = 0) m mod n < n

m n. ¬(n = 0) m div n m

m n. ¬(n = 0) m mod n m

m n.
    Real.* (Real.fromNatural m) (Real.fromNatural n) =
    Real.fromNatural (m * n)

m n.
    Real.+ (Real.fromNatural m) (Real.fromNatural n) =
    Real.fromNatural (m + n)

n. even n m. n = 2 * m

x n. Real.^ x (suc n) = Real.* x (Real.^ x n)

m n. Real.max m n = if Real.≤ m n then n else m

m n. Real.min m n = if Real.≤ m n then m else n

l n. n < length l member (nth n l) l

l m. null (l @ m) null l null m

l m. length (l @ m) = length l + length m

l m. reverse (l @ m) = reverse m @ reverse l

l1 l2. toSet (l1 @ l2) = toSet l1 toSet l2

l1 l2. foldl (C (::)) l2 l1 = reverse l1 @ l2

s t. finite (s t) finite s finite t

s t. finite s finite t finite (s t)

s t. infinite s finite t infinite (s \ t)

s t. finite s finite t finite (s t)

s t. bigIntersect (insert s (insert t )) = s t

s t. bigUnion (insert s (insert t )) = s t

s t. finite s finite t finite (cross s t)

f x. image f (insert x ) = insert (f x)

f s. finite s size (image f s) size s

f s. image f (bigUnion s) = bigUnion (image (image f) s)

s t. bigIntersect (s t) = bigIntersect s bigIntersect t

s t. bigUnion (s t) = bigUnion s bigUnion t

r s. intersect r s = fromSet (toSet r toSet s)

r s. union r s = fromSet (toSet r toSet s)

r m. wellFounded r wellFounded (λx y. r (m x) (m y))

P. (p. P p) p1 p2. P (p1, p2)

P. (p. P p) p1 p2. P (p1, p2)

P. (x y. P (x, y)) p. P p

a b. f. f = a f = b

m n. m n d. n = m + d

a b. (n. a * n b) a = 0

n. ¬(n = 0) pre n = n - 1

n. hasSize { m. m | m < n } n

l. l = [] h t. l = h :: t

l. ¬(l = []) head l :: tail l = l

s t x. s t s insert x t

f g. (x. f x = g x) f = g

f g. (x. f x = g x) f = g

p a. (x. a = x p x) p a

p a. (x. x = a p x) p a

p a. (x. a = x p x) p a

p a. (x. x = a p x) p a

P l. ¬all P l exists (λx. ¬P x) l

P l. ¬exists P l all (λx. ¬P x) l

P. P none (a. P (some a)) x. P x

f g x. S f g x = f x (g x)

() = λp q. r. (p r) (q r) r

x l. reverse (x :: l) = reverse l @ x :: []

x s. x s insert x (delete s x) = s

m n. m n m < n m = n

m n. n m n + (m - n) = m

m n. n m m - n + n = m

m n. m < n n < m m = n

m n. odd (m + n) ¬(odd m odd n)

m n. odd (m ^ n) odd m n = 0

m n. interval m (suc n) = m :: interval (suc m) n

m n. m n n m m = n

n l. n length l length (take n l) = n

n. odd n m. n = suc (2 * m)

x y. Real.≤ x y Real.≤ y x x = y

l i. i < length l nth i l toSet l

l k. foldl (λn x. suc n) k l = length l + k

l k. foldr (λx n. suc n) k l = length l + k

s n. hasSize s n finite s size s = n

s t. s t t s s = t

s t. s (t \ s) = t s t

s t. t \ s s = t s t

s t. s t t s s = t

s t. bijections s t = injections s t surjections s t

s. finite s x. member x (fromSet s) x s

r s.
    subrelation r s transitive s subrelation (transitiveClosure r) s

PAIR'. fn. a0 a1. fn (a0, a1) = PAIR' a0 a1

r s. subrelation r s subrelation s r r = s

{ s. s | s } = insert

p q. (x. p q) (x. p) x. q

p q. (x. p q) (x. p) x. q

p q. (x. p q) (x. p) x. q

p q. (x. p q) (x. p) x. q

p q. (x. p) (x. q) x. p q

p q. (x. p) (x. q) x. p q

m n. m < n d. n = m + suc d

n. size { m. m | m < n } = n

s. finite s a. x. x s x a

f s x. x s f x image f s

P l. (x. member x l P x) all P l

P l. (x. P x member x l) exists P l

m x y. measure m x y m x < m y

s x y. fromSet s x y (x, y) s

r. wellFounded r ¬f. n. r (f (suc n)) (f n)

r x y. (x, y) toSet r r x y

p. (x y. p x y) y x. p x y

p. (x y. p x y) y x. p x y

h t. last (h :: t) = if t = [] then h else last t

x s. delete (insert x s) x = s ¬(x s)

p q. (x. p q x) p x. q x

p q. (x. p q x) p x. q x

p q. (x. p q x) p x. q x

p q. (x. p q x) p x. q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

m n. m < n m n ¬(m = n)

m n. even (m ^ n) even m ¬(n = 0)

m n. m < suc n m = n m < n

m n. ¬(m = 0) m * n div m = n

m n. ¬(m = 0) m * n mod m = 0

s t. s t s t ¬(s = t)

s t. s t s t ¬(t s)

a b. a b finite b size a < size b

a b. a b finite b size a size b

p q. (x. p x q) (x. p x) q

p q. (x. p x q) (x. p x) q

p q. (x. p x q) (x. p x) q

p q. (x. p x q) (x. p x) q

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p. (∃!x. p x) x. y. p y x = y

s. bigIntersect s = universe t. t s t = universe

s. bigUnion s = t. t s t =

x y z. x = y y = z x = z

h k t. last (h :: k :: t) = last (k :: t)

x y s. insert x (insert y s) = insert y (insert x s)

x y s. delete (delete s x) y = delete (delete s y) x

x s t. s insert x t delete s x t

x s t. insert x s t = insert x (s t)

a. { x. x | a = x } = insert a

a. { x. x | x = a } = insert a

p q r. p q r p q r

t1 t2 t3. (t1 t2) t3 t1 t2 t3

t1 t2 t3. (t1 t2) t3 t1 t2 t3

n x i. i < n nth i (replicate n x) = x

x y n. x y x ^ n y ^ n

m n p. distance m p distance m n + distance n p

m n p. m * (n * p) = n * (m * p)

m n p. m * (n * p) = m * n * p

m n p. m + (n + p) = m + n + p

m n p. m ^ (n * p) = (m ^ n) ^ p

m n p. m + n = m + p n = p

m n p. m + p = n + p m = n

m n p. m + n < m + p n < p

m n p. n + m < p + m n < p

m n p. m + n m + p n p

m n p. m + p n + p m n

m n p. distance (m + n) (m + p) = distance n p

p m n. distance (m + p) (n + p) = distance m n

m n p. (m * n + p) mod n = p mod n

m n p. m < n n < p m < p

m n p. m < n n p m < p

m n p. m n n < p m < p

m n p. m n n p m p

x y z. Real.≤ y z Real.≤ (Real.+ x y) (Real.+ x z)

x y z. Real.* x (Real.* y z) = Real.* (Real.* x y) z

x y z. Real.+ x (Real.+ y z) = Real.+ (Real.+ x y) z

x y z. Real.≤ x y Real.≤ y z Real.≤ x z

x. ¬(x = 0) Real.* (Real.inv x) x = 1

l h t. (h :: t) @ l = h :: t @ l

l m n. l @ m @ n = (l @ m) @ n

l. ¬(l = []) length (tail l) = length l - 1

s c. image (λx. c) s = if s = then else insert c

s t x. disjoint (delete s x) t disjoint (delete t x) s

s t x. s \ insert x t = delete s x \ t

s t x. delete s x t = delete (s t) x

s t u. s t u s \ t u

s t u. s t u s \ u t

t u s. s \ t \ u = s \ (t u)

t u s. s \ t \ u = s \ u \ t

s t u. s t u = s (t u)

s t u. s t u = s (t u)

s t u. s t t u s u

s t u. s t t u s u

s t u. s t t u s u

s t u. s t t u s u

s t. s t x. x s x t

s t. (x. x s x t) s = t

s t. (x. x s x t) s = t

s. finite s finite { t. t | t s }

f s t. s t image f s image f t

f g l. map (g f) l = map g (map f l)

p x. (y. p y y = x) (select) p = x

P l. all P l x. x toSet l P x

P l. exists P l x. x toSet l P x

f g s. image (f g) s = image f (image g s)

P f l. all P (map f l) all (P f) l

P f l. exists P (map f l) exists (P f) l

f g h. f (g h) = f g h

f b l. foldr f b (reverse l) = foldl (C f) b l

r s t. subrelation r s subrelation s t subrelation r t

p. (x. y. p x y) y. x. p x (y x)

p. (x. ∃!y. p x y) ∃!f. x. p x (f x)

f b l. foldl f b l = foldr (C f) b (reverse l)

f b l. foldl f b (reverse l) = foldr (C f) b l

b f h t. case b f (h :: t) = f h t

b f g. (λx. if b then f x else g x) = if b then f else g

n x. toSet (replicate n x) = if n = 0 then else insert x

m n. n < m m - suc n = pre (m - n)

m n. n < m suc (m - suc n) = m - n

m n. n m suc (m - n) = suc m - n

m n. n m (m - n = 0 m = n)

m n. n m pre (suc m - n) = m - n

m n. n m suc m - suc n = m - n

m n. m suc n m = suc n m n

m n. 0 < m * n 0 < m 0 < n

m n. m * n = 0 m = 0 n = 0

m n. m + n = 0 m = 0 n = 0

m n. distance (distance m n) (distance m (n + 1)) = 1

l m. head (l @ m) = if l = [] then head m else head l

p q. last (p @ q) = if q = [] then last p else last q

l m. l @ m = [] l = [] m = []

s t. s t = s = t =

s t. cross s t = s = t =

s. finite s (finite (bigUnion s) t. t s finite t)

s. finite (bigUnion s) finite s t. t s finite t

P. (a. P (left a)) (a. P (right a)) x. P x

n. hasSize { m. m | m n } (n + 1)

l. ¬(l = []) last l = nth (length l - 1) l

s t. disjoint s t ¬x. x s x t

s t. disjoint s (bigUnion t) x. x t disjoint s x

t f. t bigIntersect f s. s f t s

s. finite s toSet (fromSet s) = s length (fromSet s) = size s

f h t. map f (h :: t) = f h :: map f t

f x s. image f (insert x s) = insert (f x) (image f s)

f. injective f x1 x2. f x1 = f x2 x1 = x2

p h t. all p (h :: t) p h all p t

p h t. exists p (h :: t) p h exists p t

P l x. member x (filter P l) P x member x l

P. P 0 (n. P n P (suc n)) n. P n

s x. x bigIntersect s t. t s x t

s x. x bigUnion s t. t s x t

f t. bigUnion f t s. s f s t

P l. (x. all (P x) l) all (λs. x. P x s) l

P l. (x. exists (P x) l) exists (λs. x. P x s) l

r s. subrelation r (bigIntersect s) t. t s subrelation r t

x s. x rest s x s ¬(x = choice s)

NONE' SOME'. fn. fn none = NONE' a. fn (some a) = SOME' a

m n. distance m n = if m n then n - m else m - n

m n. n m (even (m - n) even m even n)

m n. ¬(n = 0) (m div n = 0 m < n)

m n. ¬(n = 0) m mod n mod n = m mod n

m n. m = m * n m = 0 n = 1

m n. m = n * m m = 0 n = 1

n x. 0 < x ^ n ¬(x = 0) n = 0

m n. m * n = m m = 0 n = 1

m n. n * m = m m = 0 n = 1

m n. m ^ n = 0 m = 0 ¬(n = 0)

n l. n length l length (drop n l) = length l - n

n l. n length l take n l @ drop n l = l

x y. ¬(y = 0) Real./ x y = Real.* x (Real.inv y)

p x. x { y. y | p y } p x

r s. subrelation r s x y. r x y s x y

r s. (x y. r x y s x y) r = s

x h t. member x (h :: t) x = h member x t

x y s. x insert y s x = y x s

x l1 l2. member x (l1 @ l2) member x l1 member x l2

x s t. insert x s t x t s t

b t1 t2. (if b then t1 else t2) (¬b t1) (b t2)

p q r. p (q r) p q p r

p q r. p q r (p q) (p r)

p q r. p q r (p q) (p r)

p q r. (p q) r p r q r

p q r. p q r (p r) (q r)

p q r. p q r (p r) (q r)

m n i. i < n nth i (interval m n) = m + i

m n p. m * (n + p) = m * n + m * p

m n p. m * distance n p = distance (m * n) (m * p)

m n p. m ^ (n + p) = m ^ n * m ^ p

m n p. (m + n) * p = m * p + n * p

p m n. distance m n * p = distance (m * p) (n * p)

p m n. (m * n) ^ p = m ^ p * n ^ p

n. size { m. m | m n } = n + 1

x y z. Real.* x (Real.+ y z) = Real.+ (Real.* x y) (Real.* x z)

s t x. x s t x s x t

s t x. x s t x s x t

s t u. s t \ u s t disjoint s u

s t u. s t u s t s u

s t u. disjoint (s t) u disjoint s u disjoint t u

s t u. s t u s u t u

s t u. s (t u) = s t s u

s t u. s t u = (s t) (s u)

s t u. (s t) u = s u t u

s t u. s t u = (s u) (t u)

s t. ¬(s = t) x. x t ¬(x s)

f l1 l2. map f (l1 @ l2) = map f l1 @ map f l2

f s t. image f (s t) = image f s image f t

f. (y. x. f x = y) g. y. f (g y) = y

f. (m. l. map f l = m) y. x. f x = y

f. (t. s. image f s = t) y. x. f x = y

P l1 l2. all P (l1 @ l2) all P l1 all P l2

P l1 l2. filter P (l1 @ l2) = filter P l1 @ filter P l2

P l. all P l i. i < length l P (nth i l)

P l. exists P l i. i < length l P (nth i l)

P f l. filter P (map f l) = map f (filter (P f) l)

(∃!) = λp. () p x y. p x p y x = y

h t.
    nubReverse (h :: t) =
    if member h t then nubReverse t else h :: nubReverse t

b f x y. f (if b then x else y) = if b then f x else f y

b f g x. (if b then f else g) x = if b then f x else g x

m n. n m (odd (m - n) ¬(odd m odd n))

x n. x ^ n = 1 x = 1 n = 0

s P. { x. x | x s P x } s

f s. { x. f x | x s } = image f s

p q l. all p (filter q l) all (λx. q x p x) l

p q l. exists p (filter q l) exists (λx. q x p x) l

p. (∃!x. p x) x. p x y. p y y = x

P. (n. (m. m < n P m) P n) n. P n

r. toSet r = { x y. x, y | r x y }

s x y. bigIntersect s x y r. r s r x y

s x y. bigUnion s x y r. r s r x y

x s t. s delete t x s t ¬(x s)

x s t. disjoint (insert x s) t ¬(x t) disjoint s t

x s. ¬(x s) t. s insert x t s t

l x. member x l i. i < length l x = nth i l

s x y. x delete s y x s ¬(x = y)

s x. x s t. s = insert x t ¬(x t)

s t x. x s \ t x s ¬(x t)

s t. s t x. ¬(x s) insert x s t

s. s = x t. s = insert x t ¬(x t)

f s t. finite t s image f t size s size t

f g. (x. y. g y = f x) h. f = g h

p g h. f. x. f x = if p x then f (g x) else h x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x) (x. q x) x. p x q x

p q. (x. p x) (x. q x) x. p x q x

r.
    transitiveClosure r =
    bigIntersect { s. s | subrelation r s transitive s }

t. (λp. t p) = λ(x, y). t (x, y)

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

a b c. (n. a * n b * n + c) a b

m n. ¬(n = 0) (m div n) * n + m mod n = m

m n. m * n = 1 m = 1 n = 1

x y. Real.≤ 0 x Real.≤ 0 y Real.≤ 0 (Real.* x y)

s t. finite s finite t size (s t) size s + size t

s t. finite t s t (size s = size t s = t)

a b. finite b a b size a = size b a = b

a b. finite b a b size b size a a = b

s t. finite s finite t size (cross s t) = size s * size t

P Q l. (x. P x Q x) all P l all Q l

P. (n. P n) n. P n m. m < n ¬P m

P. P [] (a0 a1. P a1 P (a0 :: a1)) x. P x

f b h t. foldr f b (h :: t) = f h (foldr f b t)

r s x y. intersect r s x y r x y s x y

r s x y. union r s x y r x y s x y

f b h t. foldl f b (h :: t) = foldl f (f b h) t

h t n. n < length t nth (suc n) (h :: t) = nth n t

x l. x toSet l i. i < length l x = nth i l

n h t. n length t drop (suc n) (h :: t) = drop n t

m n p. n m m + p - (n + p) = m - n

m n p. p n m + n - (m + p) = n - p

m n p. m * n = m * p m = 0 n = p

m n p. m * p = n * p m = n p = 0

x y n. x ^ n = y ^ n x = y n = 0

m n p. m * n m * p m = 0 n p

m n p. m * p n * p m n p = 0

x y n. x ^ n y ^ n x y n = 0

s n. finite s n size s t. t s hasSize t n

s n. (finite s n size s) t. t s hasSize t n

a. finite a a = x s. a = insert x s finite s

f l i. i < length l nth i (map f l) = f (nth i l)

P. (n. P n) P ((minimal) P) m. m < (minimal) P ¬P m

s. bigIntersect s = universe \ bigUnion { t. universe \ t | t s }

s. bigUnion s = universe \ bigIntersect { t. universe \ t | t s }

x s.
    finite s size (insert x s) = if x s then size s else suc (size s)

y s f. y image f s x. y = f x x s

s t. finite s t s size (s \ t) = size s - size t

s P. finite s finite { x. x | x s P x }

f y l. member y (map f l) x. member x l y = f x

f g l. all (λx. f x = g x) l map f l = map g l

f. (y. x. f x = y) P. (x. P (f x)) y. P y

f. (y. x. f x = y) P. (x. P (f x)) y. P y

P Q l. all P l all Q l all (λx. P x Q x) l

P Q l. all (λx. P x Q x) l all P l all Q l

s. bigIntersect s = { x. x | u. u s x u }

s. bigUnion s = { x. x | u. u s x u }

r. transitive r x y z. r x y r y z r x z

f b l1 l2. foldr f b (l1 @ l2) = foldr f (foldr f b l2) l1

f b l1 l2. foldl f b (l1 @ l2) = foldl f (foldl f b l1) l2

cond = λt t1 t2. select x. ((t ) x = t1) ((t ) x = t2)

a b n. ¬(a = 0) (n b div a a * n b)

m n p. ¬(p = 0) m * (n div p) m * n div p

m n p. m * n < m * p ¬(m = 0) n < p

m n p. m * p < n * p m < n ¬(p = 0)

x y n. x ^ n < y ^ n x < y ¬(n = 0)

x y n. x < y ¬(n = 0) x ^ n < y ^ n

m n p. ¬(m = 0) n < p m * n < m * p

m n p. ¬(p = 0) m n m div p n div p

m n p. ¬(p = 0) p m n div m n div p

a b n. ¬(a = 0) b a * n b div a n

m n. ¬(n = 0) (m mod n = 0 q. m = q * n)

s t. s t s t a. a t ¬(a s)

INL' INR'. fn. (a. fn (left a) = INL' a) a. fn (right a) = INR' a

h1 h2 t1 t2. h1 :: t1 = h2 :: t2 h1 = h2 t1 = t2

x y a b. (x, y) = (a, b) x = a y = b

x y s t. (x, y) cross s t x s y t

x s. insert x s = { y. y | y = x y s }

p1 p2 q1 q2. (p1 p2) (q1 q2) p1 q1 p2 q2

p1 p2 q1 q2. (p1 p2) (q1 q2) p1 q1 p2 q2

p1 p2 q1 q2. (p2 p1) (q1 q2) (p1 q1) p2 q2

m n p q. distance m p distance (m + n) (p + q) + distance n q

m n p q. m = n + q * p m mod p = n mod p

m n p q. m < n p < q m * p < n * q

m n p q. m < p n < q m + n < p + q

m n p q. m < p n q m + n < p + q

m n p q. m n p q m * p n * q

m n p q. m p n < q m + n < p + q

m n p q. m p n q m + n p + q

m n p q. distance (m + n) (p + q) distance m p + distance n q

m n p q. distance m n + distance n p q distance m p q

s t. s t = { x. x | x s x t }

s t. s t = { x. x | x s x t }

s t. finite s finite t size (s t) = size s + size (t \ s)

s t m n. hasSize s m hasSize t n hasSize (cross s t) (m * n)

u s. u \ bigIntersect s = bigUnion { t. u \ t | t s }

f s t. s image f t u. u t s = image f u

m a b. (y. measure m y a measure m y b) m a m b

s t. t bigUnion s = bigUnion { x. t x | x s }

s t. t bigIntersect s = bigIntersect { x. t x | x s }

s t. bigUnion s \ t = bigUnion { x. x \ t | x s }

s t. bigUnion s t = bigUnion { x. x t | x s }

s t. bigIntersect s t = bigIntersect { x. x t | x s }

p. p (a s. ¬(a s) p (insert a s)) s. p s

p. (x. ∃!y. p x y) f. x y. p x y f x = y

n h t. n length t take (suc n) (h :: t) = h :: take n t

m n p. n m (m - n) * p = m * p - n * p

m n p. p n m * (n - p) = m * n - m * p

m n p. distance m n = p m + p = n n + p = m

m n p. distance m n p m n + p n m + p

n. (k m. odd m n = 2 ^ k * m) ¬(n = 0)

P h t. filter P (h :: t) = if P h then h :: filter P t else filter P t

x s. finite s size (delete s x) = if x s then size s - 1 else size s

l n. length l = suc n h t. l = h :: t length t = n

s x. delete s x = { y. y | y s ¬(y = x) }

s t. s \ t = { x. x | x s ¬(x t) }

p c x y. p (if c then x else y) (c p x) (¬c p y)

t. { x y. x, y | x y t x } =

FINITE'.
    FINITE' (x s. FINITE' s FINITE' (insert x s))
    a. finite a FINITE' a

x y s.
    delete (insert x s) y =
    if x = y then delete s y else insert x (delete s y)

x s t. insert x s t = if x t then insert x (s t) else s t

x s t. insert x s t = if x t then s t else insert x (s t)

NIL' CONS'.
    fn. fn [] = NIL' a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)

m n p. ¬(n = 0) m * (p mod n) mod n = m * p mod n

m n p. ¬(n = 0) (m mod n) * p mod n = m * p mod n

m n p. ¬(n = 0) (m mod n) ^ p mod n = m ^ p mod n

a b n. ¬(n = 0) (a * n + b) div n = a + b div n

m n p. ¬(m * p = 0) m * n div m * p = n div p

m n p. ¬(n * p = 0) m div n div p = m div n * p

m n p. ¬(n * p = 0) m mod n * p mod n = m mod n

m n p. ¬(p = 0) m + p n m div p < n div p

m n. (q. m = n * q) if n = 0 then m = 0 else m mod n = 0

n l i. n + i < length l nth i (drop n l) = nth (n + i) l

n l i. n length l i < n nth i (take n l) = nth i l

s t x. insert x s \ t = if x t then s \ t else insert x (s \ t)

s. finite s size { t. t | t s } = 2 ^ size s

f. (x y. f x = f y x = y) g. x. g (f x) = x

p. (∃!x. p x) (x. p x) x x'. p x p x' x = x'

r. wellFounded r p. (x. (y. r y x p y) p x) x. p x

m n q r. m = q * n + r r < n m div n = q

m n q r. m = q * n + r r < n m mod n = r

s n. hasSize s n hasSize { t. t | t s } (2 ^ n)

s t.
    finite s finite t (size (s t) = size s + size t disjoint s t)

s t. finite s finite t disjoint s t size (s t) = size s + size t

f s. (x y. f x = f y x = y) infinite s infinite (image f s)

f. (x y. f x = f y x = y) s. infinite (image f s) infinite s

P Q l. (x. member x l P x Q x) all P l all Q l

P Q l. (x. member x l P x Q x) exists P l exists Q l

f l1 l2 n. length l1 = n length l2 = n length (zipWith f l1 l2) = n

a b n. ¬(a = 0) (b div a n b < a * (n + 1))

s x x'. (x s x' s) (x delete s x' x' delete s x)

s x x'. (x delete s x' x' delete s x) x s x' s

s n. hasSize s (suc n) ¬(s = ) a. a s hasSize (delete s a) n

f s. finite s finite { y. y | x. x s y = f x }

f s. image f s = { y. y | x. x s y = f x }

p f s. (y. y image f s p y) x. x s p (f x)

p f s. (y. y image f s p y) x. x s p (f x)

r. wellFounded r p. (x. p x) x. p x y. r y x ¬p y

r. wellFounded r p. (x. p x) x. p x y. r y x ¬p y

s t. finite s finite t size (s t) = size s + size t - size (s t)

s t. finite s finite t size (s t) + size (s t) = size s + size t

s t.
    finite s finite t size (s t) < size s + size t ¬disjoint s t

p. (b. n. p n b) a b. n. n * p n a * n + b

b p q r s. (p q) (r s) (if b then p else r) if b then q else s

m n p. ¬(n = 0) (m mod n) * (p mod n) mod n = m * p mod n

a b n. ¬(n = 0) (a mod n + b mod n) mod n = (a + b) mod n

m n p. ¬(m * p = 0) m * n mod m * p = m * (n mod p)

m n p. ¬(n * p = 0) m div n mod p = m mod n * p div n

s t. cross s t = { x y. x, y | x s y t }

f g. (x y. g x = g y f x = f y) h. f = h g

f s. bigIntersect (image f s) = { y. y | x. x s y f x }

f s. bigUnion (image f s) = { y. y | x. x s y f x }

p f s. (t. t image f s p t) t. t s p (image f t)

p f s. (t. t image f s p t) t. t s p (image f t)

s n. hasSize s (suc n) a t. hasSize t n ¬(a t) s = insert a t

s t m n.
    hasSize s m hasSize t n disjoint s t hasSize (s t) (m + n)

s t m n. hasSize s m hasSize t n t s hasSize (s \ t) (m - n)

p f. { x. f x | p x } = image f { x. x | p x }

x y s.
    insert x (insert y s) = insert y (insert x s)
    insert x (insert x s) = insert x s

n. { m. m | m < suc n } = insert n { m. m | m < n }

s t u. finite u disjoint s t s t = u size s + size t = size u

p a s. (x. x insert a s p x) p a x. x s p x

p a s. (x. x insert a s p x) p a x. x s p x

p s. (x. x bigUnion s p x) t x. t s x t p x

p s. (x. x bigUnion s p x) t x. t s x t p x

p a b. (a, b) { x y. x, y | p x y } p a b

p. { ab. ab | p ab } = { a b. a, b | p (a, b) }

l m.
    length l = length m (i. i < length l nth i l = nth i m) l = m

s x.
    ¬(s = ) (m. x. x s Real.≤ x m) x s Real.≤ x (Real.sup s)

f s t.
    finite t t image f s s'. finite s' s' s t = image f s'

f s t.
    finite t t image f s s'. finite s' s' s t image f s'

s t. finite s finite t finite { x y. x, y | x s y t }

x p m n. ¬(p = 0) x mod p ^ m mod p ^ n = x mod p ^ min m n

f s a.
    (x. f x = f a x = a)
    image f (delete s a) = delete (image f s) (f a)

p x y. p (distance x y) d. (x = y + d p d) (y = x + d p d)

P. (x. P x) (M. x. P x x M) m. P m x. P x x m

f. (l m. map f l = map f m l = m) x y. f x = f y x = y

f. (s t. image f s = image f t s = t) x y. f x = f y x = y

p f g. (x. p x y. g y = f x) h. x. p x f x = g (h x)

a b c d. ¬(b = 0) b * c < (a + 1) * d c div d a div b

p f q. (z. z { x. f x | p x } q z) x. p x q (f x)

p f q. (z. z { x. f x | p x } q z) x. p x q (f x)

p q. (b. i. p i q i + b) b n. i. n i p i q i + b

p.
    p (x s. p s ¬(x s) finite s p (insert x s))
    s. finite s p s

f s t.
    (x y. f x = f y x = y) image f (s \ t) = image f s \ image f t

f s t.
    (x y. f x = f y x = y) image f (s t) = image f s image f t

p f. bigIntersect { x. f x | p x } = { a. a | x. p x a f x }

p f. bigUnion { x. f x | p x } = { a. a | x. p x a f x }

p f s.
    (t. finite t t image f s p t)
    t. finite t t s p (image f t)

f h1 h2 t1 t2.
    length t1 = length t2
    zipWith f (h1 :: t1) (h2 :: t2) = f h1 h2 :: zipWith f t1 t2

f s.
    (x y. x s y s f x = f y x = y)
    (finite (image f s) finite s)

f A. (x y. f x = f y x = y) finite A finite { x. x | f x A }

x m n. x ^ m = x ^ n if x = 0 then m = 0 n = 0 else x = 1 m = n

x m n. x ^ m x ^ n if x = 0 then m = 0 n = 0 else x = 1 m n

m n p q r s.
    distance m n r distance p q s
    distance m p distance n q + (r + s)

s f. finite s image f s = s x y. x s y s f x = f y x = y

f s t. (y. y t x. f x = y) (x. f x t x s) image f s = t

k l m.
    k < length l + length m
    nth k (l @ m) = if k < length l then nth k l else nth (k - length l) m

s m.
    ¬(s = ) (m. x. x s Real.≤ x m) (x. x s Real.≤ x m)
    Real.≤ (Real.sup s) m

f. (y. x. f x = y) P. image f { x. x | P (f x) } = { x. x | P x }

s t.
    finite s finite t
    size { x y. x, y | x s y t } = size s * size t

s n.
    hasSize s n
    f. (m. m < n f m s) x. x s ∃!m. m < n f m = x

f s.
    (x y. x s y s f x = f y x = y) finite s
    size (image f s) = size s

p.
    p (s. finite s ¬(s = ) x. x s (p (delete s x) p s))
    s. finite s p s

x m n. x ^ m < x ^ n 2 x m < n x = 0 ¬(m = 0) n = 0

f s n.
    (x y. x s y s f x = f y x = y)
    (hasSize (image f s) n hasSize s n)

f s n.
    (x y. x s y s f x = f y x = y) hasSize s n
    hasSize (image f s) n

a b c d. b * c < (a + 1) * d a * d < (c + 1) * b a div b = c div d

d t.
    { f. f | (x. x f x t) x. ¬(x ) f x = d } =
    insert (λx. d)

s t m n.
    hasSize s m hasSize t n
    hasSize { x y. x, y | x s y t } (m * n)

f s.
    (x y. x s y s f x = f y x = y) g. x. x s g (f x) = x

r s.
    wellFounded r wellFounded s
    wellFounded (λ(x1, y1) (x2, y2). r x1 x2 s y1 y2)

a b n.
    ¬(n = 0)
    ((a + b) mod n = a mod n + b mod n (a + b) div n = a div n + b div n)

f u v.
    (t. t v s. s u image f s = t)
    y. y v x. x u f x = y

f s.
    t.
      t s image f s = image f t
      x y. x t y t f x = f y x = y

f t.
    finite t (y. y t finite { x. x | f x = y })
    finite { x. x | f x t }

f s t.
    finite s (x. x s finite (t x))
    finite { x y. f x y | x s y t x }

p f q. (z. z { x y. f x y | p x y } q z) x y. p x y q (f x y)

p f q. (z. z { x y. f x y | p x y } q z) x y. p x y q (f x y)

f s t.
    (y. y t x. x s f x = y)
    g. y. y t g y s f (g y) = y

p f g.
    (x y. p x p y g x = g y f x = f y) h. x. p x f x = h (g x)

p f.
    bigIntersect { x y. f x y | p x y } =
    { a. a | x y. p x y a f x y }

p f.
    bigUnion { x y. f x y | p x y } = { a. a | x y. p x y a f x y }

f.
    (x y. f x = f y x = y) (y. x. f x = y)
    g. (y. f (g y) = y) x. g (f x) = x

f s t.
    finite s (x. x s f x t) (y. y t ∃!x. x s f x = y)
    size t = size s

p.
    (x. p x) (m. x. p x Real.≤ x m)
    s. (x. p x Real.≤ x s) m. (x. p x Real.≤ x m) Real.≤ s m

r.
    wellFounded r
    h.
      (f g x. (z. r z x f z = g z) h f x = h g x)
      ∃!f. x. f x = h f x

p a b.
    p 0 0 = 0 (m n. p m n a * (m + n) + b)
    c. m n. p m n c * (m + n)

d s t.
    finite s finite t
    finite { f. f | (x. x s f x t) x. ¬(x s) f x = d }

s t f.
    finite s size s = size t image f s = t
    x y. x s y s f x = f y x = y

s t.
    surjections s t =
    { f. f | (x. x s f x t) x. x t y. y s f y = x }

r s.
    wellFounded r wellFounded s
    wellFounded (λ(x1, y1) (x2, y2). r x1 x2 x1 = x2 s y1 y2)

r.
    (x. ¬r x x) (x y z. r x y r y z r x z)
    (x. finite { y. y | r y x }) wellFounded r

a t.
    { s. s | s insert a t } =
    { s. s | s t } image (λs. insert a s) { s. s | s t }

s t.
    finite s finite t size s size t
    f. image f s t x y. x s y s f x = f y x = y

s t m n.
    hasSize s m (x. x s finite (t x) size (t x) n)
    size (bigUnion { x. t x | x s }) m * n

s t m n.
    hasSize s m (x. x s hasSize (t x) n)
    hasSize { x y. x, y | x s y t x } (m * n)

r s.
    wellFounded r (a. wellFounded (s a))
    wellFounded (λ(x1, y1) (x2, y2). r x1 x2 x1 = x2 s x1 y1 y2)

p f q.
    (z. z { w x y. f w x y | p w x y } q z)
    w x y. p w x y q (f w x y)

p f q.
    (z. z { w x y. f w x y | p w x y } q z)
    w x y. p w x y q (f w x y)

s t.
    injections s t =
    { f. f |
      (x. x s f x t) x y. x s y s f x = f y x = y }

f A s.
    (x y. x s y s f x = f y x = y) finite A
    finite { x. x | x s f x A }

p f.
    bigIntersect { x y z. f x y z | p x y z } =
    { a. a | x y z. p x y z a f x y z }

p f.
    bigUnion { x y z. f x y z | p x y z } =
    { a. a | x y z. p x y z a f x y z }

d s t.
    finite s finite t
    size { f. f | (x. x s f x t) x. ¬(x s) f x = d } =
    size t ^ size s

f s t.
    finite t (y. y t finite { x. x | x s f x = y })
    finite { x. x | x s f x t }

f u.
    (s t. s u t u image f s = image f t s = t)
    x y. x u y u f x = f y x = y

f s.
    bigIntersect { x. bigUnion (f x) | x s } =
    bigUnion { g. bigIntersect { x. g x | x s } | x. x s g x f x }

d s t m n.
    hasSize s m hasSize t n
    hasSize { f. f | (x. x s f x t) x. ¬(x s) f x = d }
      (n ^ m)

s t f g n.
    (x. x s f x t g (f x) = x)
    (y. y t g y s f (g y) = y) hasSize s n hasSize t n

s t f g.
    (x. x s f x t g (f x) = x)
    (y. y t g y s f (g y) = y) n. hasSize s n hasSize t n

g f b l1 l2.
    (s. g b s = s) (x s1 s2. g (f x s1) s2 = f x (g s1 s2))
    foldr f b (l1 @ l2) = g (foldr f b l1) (foldr f b l2)

g f b l1 l2.
    (s. g s b = s) (s1 s2 x. g s1 (f s2 x) = f (g s1 s2) x)
    foldl f b (l1 @ l2) = g (foldl f b l1) (foldl f b l2)

s f.
    finite s image f s s
    ((y. y s x. x s f x = y)
     x y. x s y s f x = f y x = y)

s t f g.
    (finite s finite t) (x. x s f x t g (f x) = x)
    (y. y t g y s f (g y) = y) size s = size t

s t.
    finite s finite t size s = size t
    f g.
      (x. x s f x t g (f x) = x)
      y. y t g y s f (g y) = y

s t a.
    { x y. x, y | x insert a s y t x } =
    image ((,) a) (t a) { x y. x, y | x s y t x }

s.
    { t. t | t s } =
    image (λp. { x. x | p x })
      { p. p | (x. x s p x universe) x. ¬(x s) (p x ) }

p q r.
    p q = q p p q r = p (q r) p (q r) = q (p r)
    p p = p p (p q) = p q

p q r.
    p q = q p p q r = p (q r) p (q r) = q (p r)
    p p = p p (p q) = p q

s t f.
    finite s finite t size s = size t image f s t
    ((y. y t x. x s f x = y)
     x y. x s y s f x = f y x = y)

s t m n.
    hasSize s m (x. x s hasSize (t x) n)
    (x y. x s y s ¬(x = y) disjoint (t x) (t y))
    hasSize (bigUnion { x. t x | x s }) (m * n)

f b.
    (x y s. ¬(x = y) f x (f y s) = f y (f x s))
    fold f b = b
    x s.
      finite s
      fold f b (insert x s) =
      if x s then fold f b s else f x (fold f b s)

f b.
    (x y s. ¬(x = y) f x (f y s) = f y (f x s))
    fold f b = b
    x s.
      finite s
      fold f b s =
      if x s then f x (fold f b (delete s x)) else fold f b (delete s x)

s t.
    finite s finite t size s = size t
    f.
      (x. x s f x t) (y. y t x. x s f x = y)
      x y. x s y s f x = f y x = y

f g b s.
    finite s (x. x s f x = g x)
    (x y s. ¬(x = y) f x (f y s) = f y (f x s))
    (x y s. ¬(x = y) g x (g y s) = g y (g x s))
    fold f b s = fold g b s

f s t.
    (x. x s f x t)
    ((x y. x s y s f x = f y x = y)
     (y. y t x. x s f x = y)
     g.
       (y. y t g y s) (y. y t f (g y) = y)
       x. x s g (f x) = x)

d a s t.
    { f. f |
      (x. x insert a s f x t) x. ¬(x insert a s) f x = d } =
    image (λ(b, g) x. if x = a then b else g x)
      (cross t { f. f | (x. x s f x t) x. ¬(x s) f x = d })

Input Type Operators

Input Constants

Assumptions

let a d (λe. d e) = d in a = λb. (λc. c) = λc. c

let a d
      let e g
          (let h d g in
           λi.
             (let j h in
              λk. (λl. l j k) = λm. m ((λc. c) = λc. c) ((λc. c) = λc. c))
               i h) (d ((select) d)) in
      e = (λf. (λc. c) = λc. c) in
  a = λb. (λc. c) = λc. c

let a o
      (let h
           let p r
               let p s
                   (let f o r = o s in
                    λg.
                      (let h f in
                       λi.
                         (λj. j h i) =
                         λk. k ((λd. d) = λd. d) ((λd. d) = λd. d)) g f)
                     (r = s) in
               p = (λq. (λd. d) = λd. d) in
           p = (λq. (λd. d) = λd. d) in
       λi. (λj. j h i) = λk. k ((λd. d) = λd. d) ((λd. d) = λd. d))
        (let t
             let p u
                 let v y u = o y in
                 let b w
                     (let f
                          let p x
                              (let f v x in
                               λg.
                                 (let h f in
                                  λi.
                                    (λj. j h i) =
                                    λk.
                                      k ((λd. d) = λd. d)
                                        ((λd. d) = λd. d)) g f) w in
                          p = (λq. (λd. d) = λd. d) in
                      λg.
                        (let h f in
                         λi.
                           (λj. j h i) =
                           λk. k ((λd. d) = λd. d) ((λd. d) = λd. d)) g
                        f) w in
                 b = (λc. (λd. d) = λd. d) in
             p = (λq. (λd. d) = λd. d) in
         (let f t in
          λg.
            (let h f in
             λi. (λj. j h i) = λk. k ((λd. d) = λd. d) ((λd. d) = λd. d))
              g f) (let b d d in b = λc. (λd. d) = λd. d)) in
  let b e
      (let f
           let l n
               (let f a n in
                λg.
                  (let h f in
                   λi.
                     (λj. j h i) =
                     λk. k ((λd. d) = λd. d) ((λd. d) = λd. d)) g f) e in
           l = (λm. (λd. d) = λd. d) in
       λg.
         (let h f in
          λi. (λj. j h i) = λk. k ((λd. d) = λd. d) ((λd. d) = λd. d)) g
         f) e in
  b = λc. (λd. d) = λd. d