Package relation-thm: Properties of relation operators

Information

namerelation-thm
version1.2
descriptionProperties of relation operators
authorJoe Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2011-11-15
requiresbool
pair
set
relation-def
showData.Bool
Data.Pair
Relation

Files

Theorems

irreflexive empty

reflexive universe

transitive empty

transitive universe

r. transitive (transitiveClosure r)

r. subrelation r r

r. subrelation r (transitiveClosure r)

x y. universe x y

s. toSet (fromSet s) = s

r. fromSet (toSet r) = r

x y. ¬empty x y

r x. reflexive r r x x

r x. irreflexive r ¬r x x

r s. toSet r = toSet s r = s

r s.
    subrelation r s transitive s subrelation (transitiveClosure r) s

r s. subrelation r s subrelation s r r = s

r x y. Set.∈ (x, y) (toSet r) r x y

r s t. subrelation r s subrelation s t subrelation r t

r s. subrelation r (bigIntersect s) t. Set.∈ t s subrelation r t

r s. subrelation r s x y. r x y s x y

r s. (x y. r x y s x y) r = s

s x y. bigIntersect s x y r. Set.∈ r s r x y

s x y. bigUnion s x y r. Set.∈ r s r x y

r s x y. intersect r s x y r x y s x y

r s x y. union r s x y r x y s x y

Input Type Operators

Input Constants

Assumptions

T

empty = fromSet Set.∅

universe = fromSet Set.universe

¬F T

x. Set.∈ x Set.universe

t. t t

F p. p

x. ¬Set.∈ x Set.∅

(¬) = λp. p F

t. (x. t) t

() = λp. p = λx. T

t. F t F

t. T t t

t. t T t

t. F t T

t. T t t

() = λp q. p q p

r. reflexive r x. r x x

s. bigIntersect s = fromSet (Set.bigIntersect (Set.image toSet s))

s. bigUnion s = fromSet (Set.bigUnion (Set.image toSet s))

x y. x = y y = x

p x. Set.∈ x (Set.fromPredicate p) p x

r. irreflexive r x. ¬r x x

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

r s. subrelation r s Set.⊆ (toSet r) (toSet s)

r s. intersect r s = fromSet (Set.∩ (toSet r) (toSet s))

r s. union r s = fromSet (Set.∪ (toSet r) (toSet s))

P. (p. P p) p1 p2. P (p1, p2)

f g. (x. f x = g x) f = g

s t. Set.⊆ s t Set.⊆ t s s = t

s x y. fromSet s x y Set.∈ (x, y) s

p q r. p q r p q r

s t u. Set.⊆ s t Set.⊆ t u Set.⊆ s u

s t. Set.⊆ s t x. Set.∈ x s Set.∈ x t

s t. (x. Set.∈ x s Set.∈ x t) s = t

t f. Set.⊆ t (Set.bigIntersect f) s. Set.∈ s f Set.⊆ t s

s x. Set.∈ x (Set.bigIntersect s) t. Set.∈ t s Set.∈ x t

s x. Set.∈ x (Set.bigUnion s) t. Set.∈ t s Set.∈ x t

p x. Set.∈ x { y. y | p y } p x

s t x. Set.∈ x (Set.∩ s t) Set.∈ x s Set.∈ x t

s t x. Set.∈ x (Set.∪ s t) Set.∈ x s Set.∈ x t

r. toSet r = { x y. x, y | r x y }

r.
    transitiveClosure r =
    bigIntersect { s. s | subrelation r s transitive s }

y s f. Set.∈ y (Set.image f s) x. y = f x Set.∈ x s

r. transitive r x y z. r x y r y z r x z

x y a b. (x, y) = (a, b) x = a y = b

P f s. (y. Set.∈ y (Set.image f s) P y) x. Set.∈ x s P (f x)