name | axiom-choice |
version | 1.3 |
description | axiom-choice |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-07-20 |
show | Data.Bool |
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ T ⇔ (λp. p) = λp. p
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ let a d ←
let e g ←
(let h ← d g ∈
λi.
(let j ← h ∈
λk. (λl. l j k) = λm. m ((λc. c) = λc. c) ((λc. c) = λc. c))
i ⇔ h) (d ((select) d)) ∈
e = (λf. (λc. c) = λc. c) ∈
a = λb. (λc. c) = λc. c