Package axiom-infinity: Axiom of Infinity
Information
name | axiom-infinity |
version | 1.8 |
description | Axiom of Infinity |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2013-12-10 |
requires | bool function |
show | Data.Bool Function |
Files
- Package tarball axiom-infinity-1.8.tgz
- Theory source file axiom-infinity.thy (included in the package tarball)
Theorem
⊦ ∃f. injective f ∧ ¬surjective f
External Type Operators
- →
- bool
- ind
External Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- ⊥
- ⊤
- Bool
- Function
- injective
- surjective
Assumptions
⊦ AXIOM OF INFINITY
⊦ ⊤
⊦ ⊥ ⇔ ∀p. p
⊦ (¬) = λp. p ⇒ ⊥
⊦ ⊤ ⇔ (λp. p) = λp. p
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀f. surjective f ⇔ ∀y. ∃x. y = f x
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀f. injective f ⇔ ∀x1 x2. f x1 = f x2 ⇒ x1 = x2