Package bool-choice-cond: Theorems about the conditional relying on the axiom of choice

Information

namebool-choice-cond
version1.0
description Theorems about the conditional relying on the axiom of choice
authorJoe Hurd <joe@gilith.com>
licenseMIT
showData.Bool

Files

Theorems

b t. (if b then t else t) = t

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

b f g. (λx. if b then f x else g x) = (if b then f else g)

b t1 t2. (if b then t1 else t2) (¬b t1) (b t2)

b f x y. f (if b then x else y) = (if b then f x else f y)

b f g x. (if b then f else g) x = (if b then f x else g x)

P c x y. P (if c then x else y) (c P x) (¬c P y)

b A B C D.
    (A B) (C D) (if b then A else C) (if b then B else D)

Input Type Operators

Input Constants

Assumptions

T

t. (x. t) t

t. (λx. t x) = t

() = λP. P = λx. T

x. x = x T

x. (select y. y = x) = x

() = λp q. p q p

t. (t T) (t F)

(¬T F) (¬F T)

() = λp q. (λf. f p q) = λf. f T T

() = λp q. r. (p r) (q r) r

cond = λt t1 t2. select x. ((t T) x = t1) ((t F) x = t2)

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)