name | bool-choice-exists |
version | 1.0 |
description | bool-choice-exists |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ (∃) = λP. P ((select) P)
⊦ T
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λP. P = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀P x. P x ⇒ P ((select) P)
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀f g. (∀x. f x = g x) ⇒ f = g