name | bool-def |
version | 1.4 |
description | Basic boolean definitions |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2011-07-20 |
show | Data.Bool |
⊦ F ⇔ ∀p. p
⊦ (~) = λp. p ⇒ F
⊦ T ⇔ (λp. p) = λp. p
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ (∃!) = λP. (∃) P ∧ ∀x y. P x ∧ P y ⇒ x = y
⊦ cond = λt t1 t2. select x. ((t ⇔ T) ⇒ x = t1) ∧ ((t ⇔ F) ⇒ x = t2)