Package bool-def: Boolean definitions
Information
name | bool-def |
version | 1.8 |
description | Boolean definitions |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-12-18 |
show | Data.Bool |
Files
- Package tarball bool-def-1.8.tgz
- Theory file bool-def.thy (included in the package tarball)
Defined Constants
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ∨
- ¬
- cond
- F
- T
- Bool
Theorems
⊦ F ⇔ ∀p. p
⊦ (¬) = λp. p ⇒ F
⊦ T ⇔ (λp. p) = λp. p
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ (∃!) = λp. (∃) p ∧ ∀x y. p x ∧ p y ⇒ x = y
⊦ cond = λt t1 t2. select x. ((t ⇔ T) ⇒ x = t1) ∧ ((t ⇔ F) ⇒ x = t2)
Input Type Operators
- →
- bool
Input Constants
- =
- select