name | bool-int-eq |
version | 1.0 |
description | bool-int-eq |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ ∀x. x = x
⊦ ∀x. x = x ⇔ T
⊦ ∀t1 t2. (λx. t1) t2 = t1
⊦ ∀f y. (λx. f x) y = f y
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀x y z. x = y ∧ y = z ⇒ x = z
⊦ T
⊦ (∀) = λP. P = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T