Package char: Unicode characters
Information
name | char |
version | 1.138 |
description | Unicode characters |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
haskell-name | opentheory-unicode |
haskell-category | Text |
haskell-int-file | haskell.int |
haskell-src-file | haskell.art |
haskell-test-file | haskell-test.art |
haskell-equality-type | "Data.Char.char" |
haskell-arbitrary-type | "Data.Char.char" |
checksum | c90e4988aa449865cfa655cc159db8290ea8d9c4 |
requires | base byte natural-bits parser probability |
show | Data.Bool Data.Byte Data.Char Data.List Data.Option Data.Pair Data.Sum Function Number.Natural Parser Parser.Stream Probability.Random Set |
Files
- Package tarball char-1.138.tgz
- Theory source file char.thy (included in the package tarball)
Defined Type Operator
- Data
- Char
- char
- Char
Defined Constants
- Data
- Char
- dest
- destPlane
- destPosition
- invariant
- mk
- plane
- position
- random
- UTF8
- UTF8.decode
- UTF8.encode
- UTF8.encodeAscii
- UTF8.encodeChar
- UTF8.encodeChar.encode2
- UTF8.encodeChar.encode3
- UTF8.encodeChar.encode4
- UTF8.isContinuationByte
- UTF8.parse
- UTF8.parseAscii
- UTF8.parseChar
- UTF8.parseMultibyte
- UTF8.parseMultibyte.addContinuationByte
- UTF8.parseMultibyte.parse2
- UTF8.parseMultibyte.parse3
- UTF8.parseMultibyte.parse4
- UTF8.parseNatural
- UTF8.reencode
- UTF8.reencodeChar
- Char
Theorems
⊦ surjective random
⊦ finite universe
⊦ inverse UTF8.parseChar UTF8.encodeChar
⊦ strongInverse UTF8.parseChar UTF8.encodeChar
⊦ plane = destPlane ∘ dest
⊦ position = destPosition ∘ dest
⊦ UTF8.parseNatural = orelse UTF8.parseAscii UTF8.parseMultibyte
⊦ ∀a. mk (dest a) = a
⊦ ∀b. UTF8.reencode (UTF8.decode b) = b
⊦ ∀c. ∃r. random r = c
⊦ ∀c. plane c = destPlane (dest c)
⊦ ∀c. position c = destPosition (dest c)
⊦ ∀c. 1 ≤ length (UTF8.encodeChar c)
⊦ ∀c. UTF8.reencodeChar (right c) = UTF8.encodeChar c
⊦ ∀n. length (UTF8.encodeAscii n) = 1
⊦ ∀b. length (UTF8.decode b) ≤ length b
⊦ ∀b. UTF8.reencode (map left b) = b
⊦ ∀c. length c ≤ length (UTF8.encode c)
⊦ ∀c. 1 ≤ length (UTF8.reencodeChar c)
⊦ ∀c. length c ≤ length (UTF8.reencode c)
⊦ ∀b. UTF8.reencodeChar (left b) = b :: []
⊦ ∀n. UTF8.encodeAscii n = fromNatural n :: []
⊦ ∀n. length (UTF8.encodeChar.encode2 n) = 2
⊦ ∀n. length (UTF8.encodeChar.encode3 n) = 3
⊦ ∀c. UTF8.encode c = concat (map UTF8.encodeChar c)
⊦ ∀c. UTF8.decode (UTF8.encode c) = map right c
⊦ ∀c. UTF8.reencode (map right c) = UTF8.encode c
⊦ ∀c. UTF8.reencode c = concat (map UTF8.reencodeChar c)
⊦ UTF8.parse = orelse (map UTF8.parseChar right) (map any left)
⊦ ∀r. invariant r ⇔ dest (mk r) = r
⊦ ∀n. length (UTF8.encodeChar.encode4 n) = 4
⊦ ∀c. ∃n. invariant n ∧ c = mk n
⊦ finite { n. n | invariant n }
⊦ ∀c. plane c < 17
⊦ ∀b. UTF8.decode b = fst (toList (parse UTF8.parse (fromList b)))
⊦ ∀n b. apply UTF8.parseAscii (append (UTF8.encodeChar.encode2 n) b) = none
⊦ ∀n b. apply UTF8.parseAscii (append (UTF8.encodeChar.encode3 n) b) = none
⊦ ∀n b. apply UTF8.parseAscii (append (UTF8.encodeChar.encode4 n) b) = none
⊦ UTF8.parseChar =
mapPartial UTF8.parseNatural
(λn. if invariant n then some (mk n) else none)
⊦ ∀c1 c2. dest c1 = dest c2 ⇔ c1 = c2
⊦ ∀n. destPlane n = Bits.shiftRight n 16
⊦ ∀n. destPosition n = Bits.bound n 16
⊦ ∀x.
UTF8.reencodeChar x =
case x of left b → b :: [] | right c → UTF8.encodeChar c
⊦ image mk { n. n | invariant n } = universe
⊦ ∀n. invariant n ⇒ Bits.width n ≤ 21
⊦ UTF8.parseAscii =
token (λb. if bit b 7 then none else some (toNatural b))
⊦ ∀c. ∃n. invariant n ∧ c = mk n ∧ dest c = n
⊦ ∀c. dest c = position c + Bits.shiftLeft (plane c) 16
⊦ ∀b. UTF8.isContinuationByte b ⇔ bit b 7 ∧ ¬bit b 6
⊦ ∀n. UTF8.isContinuationByte (or 128 (fromNatural (Bits.bound n 6)))
⊦ ∀c. position c < 65534
⊦ size universe = 1111998
⊦ ∀n b.
n < 128 ⇒
apply UTF8.parseAscii (append (UTF8.encodeAscii n) b) = some (n, b)
⊦ ∀c. dest c < 1114110
⊦ ∀n. destPlane n = 0 ⇔ n < 65536
⊦ ∀n. invariant n ⇒ n < 1114110
⊦ ∀b n.
UTF8.parseMultibyte.addContinuationByte b n =
if UTF8.isContinuationByte b then
some (toNatural (and b 63) + Bits.shiftLeft n 6)
else none
⊦ ∀b.
UTF8.parseMultibyte.parse2 b =
filter
(foldN UTF8.parseMultibyte.addContinuationByte 0
(toNatural (and b 31))) (λn. 128 ≤ n)
⊦ ∀b.
UTF8.parseMultibyte.parse3 b =
filter
(foldN UTF8.parseMultibyte.addContinuationByte 1
(toNatural (and b 15))) (λn. 2048 ≤ n)
⊦ ∀n m.
UTF8.parseMultibyte.addContinuationByte
(or 128 (fromNatural (Bits.bound n 6))) m =
some (Bits.bound n 6 + Bits.shiftLeft m 6)
⊦ ∀b.
UTF8.parseMultibyte.parse4 b =
filter
(foldN UTF8.parseMultibyte.addContinuationByte 2
(toNatural (and b 7))) (λn. 65536 ≤ n)
⊦ ∀n b.
128 ≤ n ∧ n < 2048 ⇒
apply UTF8.parseMultibyte (append (UTF8.encodeChar.encode2 n) b) =
some (n, b)
⊦ UTF8.parseMultibyte =
sequence
(token
(λb.
if bit b 6 then
if bit b 5 then
if bit b 4 then
if bit b 3 then none
else some (UTF8.parseMultibyte.parse4 b)
else some (UTF8.parseMultibyte.parse3 b)
else some (UTF8.parseMultibyte.parse2 b)
else none))
⊦ ∀n b.
65536 ≤ n ∧ Bits.width n ≤ 21 ⇒
apply UTF8.parseMultibyte (append (UTF8.encodeChar.encode4 n) b) =
some (n, b)
⊦ ∀n.
UTF8.encodeChar.encode2 n =
let n1 ← Bits.shiftRight n 6 in
let b0 ← or 192 (fromNatural n1) in
let b1 ← or 128 (fromNatural (Bits.bound n 6)) in
b0 :: b1 :: []
⊦ ∀n b.
2048 ≤ n ∧ n < 65536 ⇒
apply UTF8.parseMultibyte (append (UTF8.encodeChar.encode3 n) b) =
some (n, b)
⊦ UTF8.encodeChar =
λc.
let n ← dest c in
if n < 128 then UTF8.encodeAscii n
else if n < 2048 then UTF8.encodeChar.encode2 n
else if n < 65536 then UTF8.encodeChar.encode3 n
else UTF8.encodeChar.encode4 n
⊦ ∀c.
UTF8.encodeChar c =
let n ← dest c in
if n < 128 then UTF8.encodeAscii n
else if n < 2048 then UTF8.encodeChar.encode2 n
else if n < 65536 then UTF8.encodeChar.encode3 n
else UTF8.encodeChar.encode4 n
⊦ ∀n.
UTF8.encodeChar.encode3 n =
let n1 ← Bits.shiftRight n 6 in
let n2 ← Bits.shiftRight n1 6 in
let b0 ← or 224 (fromNatural n2) in
let b1 ← or 128 (fromNatural (Bits.bound n1 6)) in
let b2 ← or 128 (fromNatural (Bits.bound n 6)) in
b0 :: b1 :: b2 :: []
⊦ ∀n.
UTF8.encodeChar.encode4 n =
let n1 ← Bits.shiftRight n 6 in
let n2 ← Bits.shiftRight n1 6 in
let n3 ← Bits.shiftRight n2 6 in
let b0 ← or 240 (fromNatural n3) in
let b1 ← or 128 (fromNatural (Bits.bound n2 6)) in
let b2 ← or 128 (fromNatural (Bits.bound n1 6)) in
let b3 ← or 128 (fromNatural (Bits.bound n 6)) in
b0 :: b1 :: b2 :: b3 :: []
⊦ ∀n.
invariant n ⇔
let pl ← destPlane n in
let pos ← destPosition n in
pl < 17 ∧ pos < 65534 ∧
(pl = 0 ⇒ ¬(55296 ≤ pos ∧ pos < 57344) ∧ ¬(64976 ≤ pos ∧ pos < 65008))
⊦ ∀n.
invariant n ⇔
let pl ← destPlane n in
let pos ← destPosition n in
pos < 65534 ∧
if ¬(pl = 0) then pl < 17
else ¬(55296 ≤ pos ∧ pos < 57344) ∧ ¬(64976 ≤ pos ∧ pos < 65008)
⊦ ∀r.
random r =
let n0 ← Uniform.random 1111998 r in
let n1 ← if n0 < 55296 then n0 else n0 + 2048 in
let n2 ← if n1 < 64976 then n1 else n1 + 32 in
let pl ← n2 div 65534 in
let pos ← n2 mod 65534 in
let n ← pos + Bits.shiftLeft pl 16 in
mk n
External Type Operators
- →
- bool
- Data
- Byte
- byte
- List
- list
- Option
- option
- Pair
- ×
- Sum
- +
- Byte
- Number
- Natural
- natural
- Natural
- Parser
- parser
- Stream
- stream
- Probability
- Random
- random
- Random
- Set
- set
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- ⊥
- ⊤
- Byte
- <
- and
- bit
- fromNatural
- or
- toNatural
- width
- Bits
- Bits.compare
- Bits.fromByte
- Bits.toByte
- List
- ::
- @
- []
- concat
- length
- map
- nth
- replicate
- take
- Option
- case
- map
- none
- some
- Pair
- ,
- fst
- snd
- Sum
- case
- left
- right
- Bool
- Function
- ∘
- surjective
- Number
- Natural
- *
- +
- -
- <
- ≤
- ↑
- bit0
- bit1
- div
- even
- min
- mod
- suc
- zero
- Bits
- Bits.and
- Bits.bit
- Bits.bound
- Bits.cons
- Bits.fromList
- Bits.head
- Bits.or
- Bits.shiftLeft
- Bits.shiftRight
- Bits.width
- Uniform
- Uniform.random
- Natural
- Parser
- any
- apply
- dest
- filter
- fold
- fold.prs
- foldN
- inverse
- map
- mapPartial
- orelse
- parse
- sequence
- strongInverse
- token
- Stream
- append
- case
- cons
- eof
- error
- fromList
- isProperSuffix
- isSuffix
- length
- toList
- Set
- ∅
- cross
- \
- disjoint
- finite
- fromPredicate
- image
- insert
- ∩
- ∈
- size
- ⊆
- ∪
- universe
Assumptions
⊦ ⊤
⊦ Bits.head 1
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ length [] = 0
⊦ bit0 0 = 0
⊦ Bits.fromList [] = 0
⊦ concat [] = []
⊦ fromList [] = eof
⊦ ∀x. x ∈ universe
⊦ ∀t. t ⇒ t
⊦ ∀n. 0 ≤ n
⊦ ∀n. n ≤ n
⊦ ∀xs. isSuffix xs xs
⊦ ⊥ ⇔ ∀p. p
⊦ ∀x. ¬(x ∈ ∅)
⊦ ∀t. t ∨ ¬t
⊦ ∀m. ¬(m < 0)
⊦ ∀n. ¬(n < n)
⊦ ∀n. 0 < suc n
⊦ ∀n. n < suc n
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀a. ¬(some a = none)
⊦ ∀x. replicate x 0 = []
⊦ ∀t. ¬¬t ⇔ t
⊦ ∀t. (⊤ ⇔ t) ⇔ t
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊥ ∧ t ⇔ ⊥
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊥ ⇔ ⊥
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. t ∧ t ⇔ t
⊦ ∀t. ⊥ ⇒ t ⇔ ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊥ ⇔ t
⊦ ∀t. t ∨ ⊤ ⇔ ⊤
⊦ ∀x. fromNatural (toNatural x) = x
⊦ ∀n. ¬(suc n = 0)
⊦ ∀n. 0 * n = 0
⊦ ∀m. m * 0 = 0
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀m. m - 0 = m
⊦ ∀n. n - n = 0
⊦ ∀n. min n n = n
⊦ ∀k. Bits.bound 0 k = 0
⊦ ∀n. Bits.or 0 n = n
⊦ ∀k. Bits.shiftLeft 0 k = 0
⊦ ∀k. Bits.shiftRight 0 k = 0
⊦ ∀l. [] @ l = l
⊦ ∀f. map f [] = []
⊦ ∀f. map f none = none
⊦ ∀p. parse p eof = eof
⊦ ∀p. parse p error = error
⊦ ∀p. apply p eof = none
⊦ ∀p. apply p error = none
⊦ width = 8
⊦ ∀t. (⊥ ⇔ t) ⇔ ¬t
⊦ ∀t. (t ⇔ ⊥) ⇔ ¬t
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀q. Bits.compare q [] [] ⇔ q
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ ∀n. Bits.bit n 0 ⇔ Bits.head n
⊦ ∀m. m ↑ 0 = 1
⊦ ∀m. m * 1 = m
⊦ ∀m. 1 * m = m
⊦ ∀l. length (fromList l) = length l
⊦ ∀l. Bits.toByte l = fromNatural (Bits.fromList l)
⊦ ∀m n. m ≤ m + n
⊦ ∀n k. Bits.bound n k ≤ n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀x. size (insert x ∅) = 1
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀w. Bits.bound (toNatural w) width = toNatural w
⊦ ∀n. even (suc n) ⇔ ¬even n
⊦ ∀m. m ≤ 0 ⇔ m = 0
⊦ ∀n. toNatural (fromNatural n) = Bits.bound n width
⊦ ∀l. toList (fromList l) = (l, ⊥)
⊦ ∀x. (fst x, snd x) = x
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀a b. fst (a, b) = a
⊦ ∀b f. case b f none = b
⊦ ∀m n. ¬(n + m < m)
⊦ ∀n k. Bits.width (Bits.bound n k) ≤ k
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ ∀n. 0 < n ⇔ ¬(n = 0)
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀f y. (let x ← y in f x) = f y
⊦ ∀x. ∃a b. x = (a, b)
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀h t. nth (h :: t) 0 = h
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀m n. m * n = n * m
⊦ ∀m n. m + n = n + m
⊦ ∀m n. m < n ⇒ m ≤ n
⊦ ∀m n. m + n - m = n
⊦ ∀m n. m + n - n = m
⊦ ∀n k. Bits.bound (Bits.shiftLeft n k) k = 0
⊦ ∀n k. Bits.shiftRight (Bits.bound n k) k = 0
⊦ ∀s t. finite s ⇒ finite (s \ t)
⊦ ∀f l. length (map f l) = length l
⊦ ∀f s. finite s ⇒ finite (image f s)
⊦ ∀p xs. length (parse p xs) ≤ length xs
⊦ ∀n. Bits.cons ⊥ n = 2 * n
⊦ ∀n. n ↑ 2 = n * n
⊦ ∀n. 2 * n = n + n
⊦ ∀h t. length (h :: t) = suc (length t)
⊦ ∀w n. bit w n ⇔ Bits.bit (toNatural w) n
⊦ ∀m n. ¬(m < n ∧ n ≤ m)
⊦ ∀m n. ¬(m ≤ n ∧ n < m)
⊦ ∀n i. Bits.bit n i ⇒ i < Bits.width n
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ ∀m n. ¬(m ≤ n) ⇔ n < m
⊦ ∀m n. m < suc n ⇔ m ≤ n
⊦ ∀m n. suc m ≤ n ⇔ m < n
⊦ ∀f a. map f (some a) = some (f a)
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ apply any = case none none (λx xs. some (x, xs))
⊦ ∀k. Bits.shiftLeft 1 k = 2 ↑ k
⊦ ∀f. surjective f ⇔ ∀y. ∃x. y = f x
⊦ ∀p. ¬(∀x. p x) ⇔ ∃x. ¬p x
⊦ ∀p. ¬(∃x. p x) ⇔ ∀x. ¬p x
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀x y. x ∈ insert y ∅ ⇔ x = y
⊦ ∀a b. some a = some b ⇔ a = b
⊦ ∀h t. (h :: []) @ t = h :: t
⊦ ∀t1 t2. ¬t1 ⇒ ¬t2 ⇔ t2 ⇒ t1
⊦ ∀h t. Bits.fromList (h :: t) = Bits.cons h (Bits.fromList t)
⊦ ∀x y. x < y ⇔ toNatural x < toNatural y
⊦ ∀m n. m < n ⇒ m div n = 0
⊦ ∀m n. m < n ⇒ m mod n = m
⊦ ∀n1 n2. n1 ≤ n2 ⇒ Bits.width n1 ≤ Bits.width n2
⊦ ∀m n. m + suc n = suc (m + n)
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀m n. suc m = suc n ⇔ m = n
⊦ ∀m n. suc m < suc n ⇔ m < n
⊦ ∀m n. suc m ≤ suc n ⇔ m ≤ n
⊦ ∀m n. m + n = m ⇔ n = 0
⊦ ∀k n. Bits.shiftLeft n k = 0 ⇔ n = 0
⊦ ∀n k. Bits.bound (Bits.bound n k) k = Bits.bound n k
⊦ ∀l1 l2. fromList (l1 @ l2) = append l1 (fromList l2)
⊦ ∀h t. concat (h :: t) = h @ concat t
⊦ ∀s t. disjoint s t ⇔ s ∩ t = ∅
⊦ ∀s t. finite t ∧ s ⊆ t ⇒ finite s
⊦ ∀b f a. case b f (some a) = f a
⊦ ∀n. finite { m. m | m < n }
⊦ ∀k. Bits.width (2 ↑ k - 1) = k
⊦ ∀f g a. case f g (left a) = f a
⊦ ∀f g b. case f g (right b) = g b
⊦ ∀f g x. (f ∘ g) x = f (g x)
⊦ ∀t1 t2. ¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2
⊦ ∀t1 t2. ¬(t1 ∨ t2) ⇔ ¬t1 ∧ ¬t2
⊦ ∀w1 w2. and w1 w2 = fromNatural (Bits.and (toNatural w1) (toNatural w2))
⊦ ∀w1 w2. or w1 w2 = fromNatural (Bits.or (toNatural w1) (toNatural w2))
⊦ ∀w1 w2. Bits.compare ⊥ (Bits.fromByte w1) (Bits.fromByte w2) ⇔ w1 < w2
⊦ ∀m n. min m n = if m ≤ n then m else n
⊦ ∀m n. even (m * n) ⇔ even m ∨ even n
⊦ ∀m n. even (m + n) ⇔ even m ⇔ even n
⊦ ∀m n. m * suc n = m + m * n
⊦ ∀m n. m ↑ suc n = m * m ↑ n
⊦ ∀m n. suc m * n = m * n + n
⊦ ∀n k. Bits.bound n k = n ⇔ Bits.width n ≤ k
⊦ ∀n k. Bits.shiftRight n k = 0 ⇔ Bits.width n ≤ k
⊦ ∀l1 l2. length (l1 @ l2) = length l1 + length l2
⊦ ∀s t. finite (s ∪ t) ⇔ finite s ∧ finite t
⊦ ∀s t. finite s ∧ finite t ⇒ finite (cross s t)
⊦ ∀p. (∀x. p x) ⇔ ∀a b. p (a, b)
⊦ ∀p. (∃x. p x) ⇔ ∃a b. p (a, b)
⊦ ∀m n. m ≤ n ⇔ ∃d. n = m + d
⊦ ∀n i. i < n ⇒ ∃r. Uniform.random n r = i
⊦ ∀n. Bits.cons ⊤ n = 1 + 2 * n
⊦ ∀xs y ys. isProperSuffix xs (cons y ys) ⇔ isSuffix xs ys
⊦ ∀f g. (∀x. f x = g x) ⇔ f = g
⊦ ∀x. (∃a. x = left a) ∨ ∃b. x = right b
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. m ≤ n ⇔ m < n ∨ m = n
⊦ ∀n k. Bits.shiftLeft n k = 2 ↑ k * n
⊦ ∀m n. m ≤ n ∧ n ≤ m ⇔ m = n
⊦ ∀n k. Bits.bound n k + Bits.shiftLeft (Bits.shiftRight n k) k = n
⊦ ∀f. ∃fn. ∀a b. fn (a, b) = f a b
⊦ ∀m n. m < n ⇔ ∃d. n = m + suc d
⊦ ∀n. size { m. m | m < n } = n
⊦ ∀p x xs. apply p (cons x xs) = dest p x xs
⊦ ∀p q. p ∨ (∃x. q x) ⇔ ∃x. p ∨ q x
⊦ ∀n k. Bits.width n ≤ k ⇔ n < 2 ↑ k
⊦ ∀x y z. x = y ∧ y = z ⇒ x = z
⊦ ∀t1 t2 t3. (t1 ∨ t2) ∨ t3 ⇔ t1 ∨ t2 ∨ t3
⊦ ∀n k i. Bits.bit n (k + i) ⇔ Bits.bit (Bits.shiftRight n k) i
⊦ ∀m n p. m * (n * p) = n * (m * p)
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m + (n + p) = m + n + p
⊦ ∀n k1 k2.
Bits.shiftRight n (k1 + k2) = Bits.shiftRight (Bits.shiftRight n k1) k2
⊦ ∀n j k. Bits.bound (Bits.bound n j) k = Bits.bound n (min j k)
⊦ ∀m n p. m + n = m + p ⇔ n = p
⊦ ∀p m n. m + p = n + p ⇔ m = n
⊦ ∀m n p. n + m < p + m ⇔ n < p
⊦ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
⊦ ∀m n p. n + m ≤ p + m ⇔ n ≤ p
⊦ ∀k n1 n2. Bits.shiftLeft n1 k ≤ Bits.shiftLeft n2 k ⇔ n1 ≤ n2
⊦ ∀m n p. (m * n + p) mod n = p mod n
⊦ ∀n1 n2 k. Bits.bound (n1 + Bits.shiftLeft n2 k) k = Bits.bound n1 k
⊦ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀l h t. (h :: t) @ l = h :: t @ l
⊦ ∀s t. s ⊆ t ⇔ ∀x. x ∈ s ⇒ x ∈ t
⊦ ∀s t. (∀x. x ∈ s ⇔ x ∈ t) ⇔ s = t
⊦ ∀m n. m ≤ suc n ⇔ m = suc n ∨ m ≤ n
⊦ ∀m n. m * n = 0 ⇔ m = 0 ∨ n = 0
⊦ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀l i. Bits.bit (Bits.fromList l) i ⇔ i < length l ∧ nth l i
⊦ ∀xs ys e. toList xs = (ys, e) ⇒ length xs = length ys
⊦ ∀f h t. map f (h :: t) = f h :: map f t
⊦ ∀p. p 0 ∧ (∀n. p n ⇒ p (suc n)) ⇒ ∀n. p n
⊦ ∀n k. Bits.and n (2 ↑ k - 1) = Bits.bound n k
⊦ ∀p x. x ∈ { y. y | p y } ⇔ p x
⊦ ∀f s. apply (fold f s) = case none none (λx xs. fold.prs f s x xs)
⊦ ∀k w1 w2. bit (or w1 w2) k ⇔ bit w1 k ∨ bit w2 k
⊦ ∀n i k. Bits.bit (Bits.bound n k) i ⇔ i < k ∧ Bits.bit n i
⊦ ∀m n i. Bits.bit (Bits.or m n) i ⇔ Bits.bit m i ∨ Bits.bit n i
⊦ ∀m n p. m * (n + p) = m * n + m * p
⊦ ∀m n p. m ↑ (n + p) = m ↑ n * m ↑ p
⊦ ∀m n p. (m + n) * p = m * p + n * p
⊦ ∀m n k.
Bits.bound (Bits.and m n) k =
Bits.and (Bits.bound m k) (Bits.bound n k)
⊦ ∀m n k.
Bits.bound (Bits.or m n) k = Bits.or (Bits.bound m k) (Bits.bound n k)
⊦ ∀n j k. Bits.width n ≤ j + k ⇒ Bits.width (Bits.shiftRight n k) ≤ j
⊦ ∀n1 n2 k.
Bits.shiftRight (n1 + Bits.shiftLeft n2 k) k =
Bits.shiftRight n1 k + n2
⊦ ∀xs. xs = error ∨ xs = eof ∨ ∃x xt. xs = cons x xt
⊦ ∀s t x. x ∈ s ∩ t ⇔ x ∈ s ∧ x ∈ t
⊦ ∀s t x. x ∈ s ∪ t ⇔ x ∈ s ∨ x ∈ t
⊦ ∀f.
apply (token f) =
case none none (λx xs. case f x of none → none | some y → some (y, xs))
⊦ ∀p. (∀xs. (∀ys. isProperSuffix ys xs ⇒ p ys) ⇒ p xs) ⇒ ∀xs. p xs
⊦ ∀s t x. x ∈ s \ t ⇔ x ∈ s ∧ ¬(x ∈ t)
⊦ ∀p q. (∀x. p x ∧ q x) ⇔ (∀x. p x) ∧ ∀x. q x
⊦ ∀p q. (∃x. p x) ∨ (∃x. q x) ⇔ ∃x. p x ∨ q x
⊦ ∀s t. finite s ∧ finite t ⇒ size (cross s t) = size s * size t
⊦ ∀p. p [] ∧ (∀h t. p t ⇒ p (h :: t)) ⇒ ∀l. p l
⊦ ∀h t n. n < length t ⇒ nth (h :: t) (suc n) = nth t n
⊦ ∀w1 w2. (∀i. i < width ⇒ (bit w1 i ⇔ bit w2 i)) ⇒ w1 = w2
⊦ ∀n k i. Bits.bit (Bits.shiftLeft n k) i ⇔ k ≤ i ∧ Bits.bit n (i - k)
⊦ ∀m n p. m * n = m * p ⇔ m = 0 ∨ n = p
⊦ ∀m n p. m * p = n * p ⇔ m = n ∨ p = 0
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀y s f. y ∈ image f s ⇔ ∃x. y = f x ∧ x ∈ s
⊦ ∀l n. bit (Bits.toByte l) n ⇔ n < width ∧ n < length l ∧ nth l n
⊦ ∀s t. finite s ∧ t ⊆ s ⇒ size (s \ t) = size s - size t
⊦ ∀p1 p2 xs.
apply (orelse p1 p2) xs =
case apply p1 xs of none → apply p2 xs | some yys → some yys
⊦ ∀m n p. m * n < m * p ⇔ ¬(m = 0) ∧ n < p
⊦ ∀h1 h2 t1 t2. h1 :: t1 = h2 :: t2 ⇔ h1 = h2 ∧ t1 = t2
⊦ ∀a b a' b'. (a, b) = (a', b') ⇔ a = a' ∧ b = b'
⊦ ∀x y s t. (x, y) ∈ cross s t ⇔ x ∈ s ∧ y ∈ t
⊦ ∀x xs y ys. cons x xs = cons y ys ⇔ x = y ∧ xs = ys
⊦ ∀p e. inverse p e ⇔ ∀x xs. apply p (append (e x) xs) = some (x, xs)
⊦ ∀l.
Bits.fromByte (Bits.toByte l) =
if length l ≤ width then l @ replicate ⊥ (width - length l)
else take width l
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀a b n. ¬(n = 0) ⇒ (a * n + b) div n = a + b div n
⊦ ∀m n j k.
Bits.width (Bits.bound m k + Bits.shiftLeft n k) ≤ j + k ⇔
Bits.width n ≤ j
⊦ ∀l xs ys e. toList (append l xs) = (l @ ys, e) ⇔ toList xs = (ys, e)
⊦ ∀s t. finite s ∧ finite t ∧ disjoint s t ⇒ size (s ∪ t) = size s + size t
⊦ (∀xs. append [] xs = xs) ∧
∀h t xs. append (h :: t) xs = cons h (append t xs)
⊦ ∀p xs.
apply p xs = none ∨
∃y ys. apply p xs = some (y, ys) ∧ isProperSuffix ys xs
⊦ ∀x xs. toList (cons x xs) = let (l, e) ← toList xs in (x :: l, e)
⊦ ∀p xs.
apply (sequence p) xs =
case apply p xs of none → none | some (y, ys) → apply y ys
⊦ ∀p f xs.
apply (map p f) xs =
case apply p xs of none → none | some (y, ys) → some (f y, ys)
⊦ ∀p e.
strongInverse p e ⇔
inverse p e ∧
∀xs y ys. apply p xs = some (y, ys) ⇒ xs = append (e y) ys
⊦ ∀p x xs.
parse p (cons x xs) =
case dest p x xs of none → error | some (y, ys) → cons y (parse p ys)
⊦ ∀q h1 h2 t1 t2.
Bits.compare q (h1 :: t1) (h2 :: t2) ⇔
Bits.compare (¬h1 ∧ h2 ∨ ¬(h1 ∧ ¬h2) ∧ q) t1 t2
⊦ ∀p xs.
parse p xs =
case apply p xs of
none → case xs of error → error | eof → eof | cons y ys → error
| some (y, ys) → cons y (parse p ys)
⊦ ∀p f xs.
apply (filter p f) xs =
case apply p xs of
none → none
| some (y, ys) → if f y then some (y, ys) else none
⊦ ∀b.
∃x0 x1 x2 x3 x4 x5 x6 x7.
b = Bits.toByte (x0 :: x1 :: x2 :: x3 :: x4 :: x5 :: x6 :: x7 :: [])
⊦ ∀p f xs.
apply (mapPartial p f) xs =
case apply p xs of
none → none
| some (y, ys) → case f y of none → none | some z → some (z, ys)
⊦ ∀f s.
(∀x y. x ∈ s ∧ y ∈ s ∧ f x = f y ⇒ x = y) ∧ finite s ⇒
size (image f s) = size s
⊦ ∀f s x xs.
fold.prs f s x xs =
case f x s of
none → none
| some y →
case y of
left z → some (z, xs)
| right t →
case xs of
error → none
| eof → none
| cons z zs → fold.prs f t z zs
⊦ toList error = ([], ⊤) ∧ toList eof = ([], ⊥) ∧
∀x xs. toList (cons x xs) = let (l, e) ← toList xs in (x :: l, e)
⊦ ∀f n s.
foldN f n s =
fold
(λx (m, t).
map (λu. if m = 0 then left u else right (m - 1, u)) (f x t))
(n, s)
⊦ (∀e b f. case e b f error = e) ∧ (∀e b f. case e b f eof = b) ∧
∀e b f x xs. case e b f (cons x xs) = f x xs