name | char-thm |
version | 1.0 |
description | char-thm |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ ∀pl. ∃b. Data.Char.isPlane b ∧ pl = Data.Char.mkPlane b
⊦ ∀pos. ∃w. Data.Char.isPosition w ∧ pos = Data.Char.mkPosition w
⊦ ∀pl.
∃b.
Data.Char.isPlane b ∧ pl = Data.Char.mkPlane b ∧
Data.Char.destPlane pl = b
⊦ ∀pos.
∃w.
Data.Char.isPosition w ∧ pos = Data.Char.mkPosition w ∧
Data.Char.destPosition pos = w
⊦ ∀c.
∃pl pos.
Data.Char.isChar (Data.Pair., pl pos) ∧
c = Data.Char.mkChar (Data.Pair., pl pos)
⊦ ∀c.
∃pl pos.
Data.Char.isChar (Data.Pair., pl pos) ∧
c = Data.Char.mkChar (Data.Pair., pl pos) ∧
Data.Char.destChar c = Data.Pair., pl pos
⊦ T
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀x. Data.Pair., (Data.Pair.fst x) (Data.Pair.snd x) = x
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ (∀a. Data.Char.mkChar (Data.Char.destChar a) = a) ∧
∀r. Data.Char.isChar r ⇔ Data.Char.destChar (Data.Char.mkChar r) = r
⊦ (∀a. Data.Char.mkPlane (Data.Char.destPlane a) = a) ∧
∀r. Data.Char.isPlane r ⇔ Data.Char.destPlane (Data.Char.mkPlane r) = r
⊦ (∀a. Data.Char.mkPosition (Data.Char.destPosition a) = a) ∧
∀r.
Data.Char.isPosition r ⇔
Data.Char.destPosition (Data.Char.mkPosition r) = r
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)