name | char-utf8-thm |
version | 1.7 |
description | Theorems about UTF-8 encoders and decoders |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2011-03-20 |
show | Data.Bool Data.Byte as Byte Data.Char as Char Data.Char.UTF8 Data.List Data.Option as Option Data.Pair Data.Word16 as Word16 Number.Natural as Natural Number.Numeral Parser |
⊦ isParser decoder.parse
⊦ inverse decoder encoder
⊦ strongInverse decoder encoder
⊦ destParser decoder = decoder.parse
⊦ parse decoder = Stream.case Option.none Option.none decoder.parse
⊦ ∀cs. Natural.≤ (length cs) (length (encode cs))
⊦ ∀cs. decode (encode cs) = Option.some cs
⊦ ∀bs. Natural.≤ (Stream.length (decodeStream bs)) (Stream.length bs)
⊦ ∀bs. Option.case T (λcs. encode cs = bs) (decode bs)
⊦ ∀bs. Option.case T (λcs. Natural.≤ (length cs) (length bs)) (decode bs)
⊦ T
⊦ parseContinuationByte = parseSome isContinuationByte
⊦ decoder = mkParser decoder.parse
⊦ decodeStream = parseStream decoder
⊦ ∀n. Natural.≤ 0 n
⊦ ∀x. Stream.isSuffix x x
⊦ F ⇔ ∀p. p
⊦ parseTwoContinuationBytes =
parsePair parseContinuationByte parseContinuationByte
⊦ let = λf x. f x
⊦ parseThreeContinuationBytes =
parsePair parseContinuationByte parseTwoContinuationBytes
⊦ ∀t. t ∨ ¬t
⊦ ∀p. Char.isPosition p ⇔ T
⊦ (¬) = λp. p ⇒ F
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λP. P = λx. T
⊦ ∀a'. ¬(Option.none = Option.some a')
⊦ ∀x. x = x ⇔ T
⊦ ∀n. ¬(Natural.suc n = 0)
⊦ Byte.width = 8
⊦ ∀n. bit0 n = Natural.+ n n
⊦ ∀l. Stream.length (Stream.fromList l) = length l
⊦ ∀l. Stream.toList (Stream.fromList l) = Option.some l
⊦ Word16.width = 16
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ ∀n. bit1 n = Natural.suc (Natural.+ n n)
⊦ ∀bs. decode bs = Stream.toList (decodeStream (Stream.fromList bs))
⊦ ∀chs. encode chs = concat (map encoder chs)
⊦ ∀P x. P x ⇒ P ((select) P)
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀f y. (λx. f x) y = f y
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀m n. Natural.- (Natural.+ m n) n = m
⊦ ∀x y. Stream.isProperSuffix x y ⇒ Stream.isSuffix x y
⊦ ∀p s. Natural.≤ (Stream.length (parseStream p s)) (Stream.length s)
⊦ ∀n. Natural.* 2 n = Natural.+ n n
⊦ ∀m n. ¬Natural.≤ m n ⇔ Natural.< n m
⊦ ∀m n. Natural.≤ (Natural.suc m) n ⇔ Natural.< m n
⊦ ∀x. x = Option.none ∨ ∃a. x = Option.some a
⊦ ∀s. Option.case T (λl. length l = Stream.length s) (Stream.toList s)
⊦ ∀P. (∀b. P b) ⇔ P T ∧ P F
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀a a'. Option.some a = Option.some a' ⇔ a = a'
⊦ ∀w1 w2. Byte.Bits.fromWord w1 = Byte.Bits.fromWord w2 ⇔ w1 = w2
⊦ ∀m n. Natural.suc m = Natural.suc n ⇔ m = n
⊦ ∀m n. Natural.- m n = 0 ⇔ Natural.≤ m n
⊦ ∀w1 w2.
Byte.Bits.compare F (Byte.Bits.fromWord w1) (Byte.Bits.fromWord w2) ⇔
Byte.< w1 w2
⊦ ∀w1 w2.
Byte.Bits.compare T (Byte.Bits.fromWord w1) (Byte.Bits.fromWord w2) ⇔
Byte.≤ w1 w2
⊦ ∀b0 b1.
Word16.Bits.toWord (Byte.Bits.fromWord b1 @ Byte.Bits.fromWord b0) =
Word16.fromBytes b0 b1
⊦ ∀w1 w2.
Word16.Bits.compare F (Word16.Bits.fromWord w1)
(Word16.Bits.fromWord w2) ⇔ Word16.< w1 w2
⊦ ∀m n. Natural.even (Natural.* m n) ⇔ Natural.even m ∨ Natural.even n
⊦ ∀m n. Natural.even (Natural.+ m n) ⇔ Natural.even m ⇔ Natural.even n
⊦ ∀p. Char.isPlane p ⇔ Byte.< p (Byte.fromNatural 17)
⊦ ∀f g. f = g ⇔ ∀x. f x = g x
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ (Natural.even 0 ⇔ T) ∧ ∀n. Natural.even (Natural.suc n) ⇔ ¬Natural.even n
⊦ (Natural.odd 0 ⇔ F) ∧ ∀n. Natural.odd (Natural.suc n) ⇔ ¬Natural.odd n
⊦ ∀w1 w2.
Byte.and w1 w2 =
Byte.Bits.toWord
(zipWith (∧) (Byte.Bits.fromWord w1) (Byte.Bits.fromWord w2))
⊦ ∀w1 w2.
Byte.or w1 w2 =
Byte.Bits.toWord
(zipWith (∨) (Byte.Bits.fromWord w1) (Byte.Bits.fromWord w2))
⊦ ∀m n. Natural.≤ m n ⇔ Natural.< m n ∨ m = n
⊦ ∀m n. Natural.odd (Natural.+ m n) ⇔ ¬(Natural.odd m ⇔ Natural.odd n)
⊦ ∀l n.
Byte.shiftLeft (Byte.Bits.toWord l) n =
Byte.Bits.toWord (replicate n F @ l)
⊦ ∀PAIR'. ∃fn. ∀a0 a1. fn (a0, a1) = PAIR' a0 a1
⊦ ∀pl. ∃b. Char.isPlane b ∧ pl = Char.mkPlane b ∧ Char.destPlane pl = b
⊦ ∀pos.
∃w.
Char.isPosition w ∧ pos = Char.mkPosition w ∧
Char.destPosition pos = w
⊦ ∀t1 t2 t3. t1 ∨ t2 ∨ t3 ⇔ (t1 ∨ t2) ∨ t3
⊦ ∀n.
Byte.Bits.toWord
(Natural.odd n ::
Byte.Bits.fromWord (Byte.fromNatural (Natural.div n 2))) =
Byte.fromNatural n
⊦ ∀n.
Word16.Bits.toWord
(Natural.odd n ::
Word16.Bits.fromWord (Word16.fromNatural (Natural.div n 2))) =
Word16.fromNatural n
⊦ ∀t1 t2. (if T then t1 else t2) = t1 ∧ (if F then t1 else t2) = t2
⊦ ∀m n. Natural.* m n = 0 ⇔ m = 0 ∨ n = 0
⊦ length [] = 0 ∧ ∀h t. length (h :: t) = Natural.suc (length t)
⊦ ∀w. ∃b0 b1. w = Word16.fromBytes b0 b1 ∧ Word16.toBytes w = (b0, b1)
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ (∀a. Char.mkChar (Char.destChar a) = a) ∧
∀r. Char.isChar r ⇔ Char.destChar (Char.mkChar r) = r
⊦ (∀a. Char.mkPlane (Char.destPlane a) = a) ∧
∀r. Char.isPlane r ⇔ Char.destPlane (Char.mkPlane r) = r
⊦ (∀a. Char.mkPosition (Char.destPosition a) = a) ∧
∀r. Char.isPosition r ⇔ Char.destPosition (Char.mkPosition r) = r
⊦ (∀a. mkParser (destParser a) = a) ∧
∀r. isParser r ⇔ destParser (mkParser r) = r
⊦ ∀b t1 t2. (if b then t1 else t2) ⇔ (¬b ∨ t1) ∧ (b ∨ t2)
⊦ ∀m n p.
Natural.* m (Natural.+ n p) = Natural.+ (Natural.* m n) (Natural.* m p)
⊦ ∀m n p.
Natural.* (Natural.+ m n) p = Natural.+ (Natural.* m p) (Natural.* n p)
⊦ ∀x. x = Stream.error ∨ x = Stream.eof ∨ ∃a0 a1. x = Stream.stream a0 a1
⊦ ∀p.
parse (parseSome p) =
Stream.case Option.none Option.none
(λa s. if p a then Option.some (a, s) else Option.none)
⊦ ∀b f x y. f (if b then x else y) = if b then f x else f y
⊦ ∀b f g x. (if b then f else g) x = if b then f x else g x
⊦ ∀b. isContinuationByte b ⇔ Byte.bit b 7 ∧ ¬Byte.bit b 6
⊦ ∀p e l.
inverse p e ⇒
parseStream p (Stream.fromList (concat (map e l))) = Stream.fromList l
⊦ ∀m n p. Natural.* m n = Natural.* m p ⇔ m = 0 ∨ n = p
⊦ ∀m n p. Natural.≤ (Natural.* m n) (Natural.* m p) ⇔ m = 0 ∨ Natural.≤ n p
⊦ ∀l n.
Byte.bit (Byte.Bits.toWord l) n ⇔
Natural.< n Byte.width ∧ Natural.< n (length l) ∧ nth n l
⊦ ∀m n p.
Natural.< (Natural.* m n) (Natural.* m p) ⇔ ¬(m = 0) ∧ Natural.< n p
⊦ (∀x. replicate 0 x = []) ∧
∀n x. replicate (Natural.suc n) x = x :: replicate n x
⊦ ∀h1 h2 t1 t2. h1 :: t1 = h2 :: t2 ⇔ h1 = h2 ∧ t1 = t2
⊦ ∀x y a b. (x, y) = (a, b) ⇔ x = a ∧ y = b
⊦ ∀p e.
inverse p e ⇔
∀x s. parse p (Stream.append (e x) s) = Option.some (x, s)
⊦ ∀l.
Byte.Bits.fromWord (Byte.Bits.toWord l) =
if Natural.≤ (length l) Byte.width then
l @ replicate (Natural.- Byte.width (length l)) F
else take Byte.width l
⊦ ∀l.
Word16.Bits.fromWord (Word16.Bits.toWord l) =
if Natural.≤ (length l) Word16.width then
l @ replicate (Natural.- Word16.width (length l)) F
else take Word16.width l
⊦ (∀l. drop 0 l = l) ∧ ∀n h t. drop (Natural.suc n) (h :: t) = drop n t
⊦ ∀c.
∃pl pos.
Char.isChar (pl, pos) ∧ c = Char.mkChar (pl, pos) ∧
Char.destChar c = (pl, pos)
⊦ (∀b f. Option.case b f Option.none = b) ∧
∀b f a. Option.case b f (Option.some a) = f a
⊦ ∀p e s.
strongInverse p e ⇒
Option.case T (λl. Stream.toList s = Option.some (concat (map e l)))
(Stream.toList (parseStream p s))
⊦ (∀l. [] @ l = l) ∧ ∀h t l. (h :: t) @ l = h :: t @ l
⊦ (∀s. Stream.append [] s = s) ∧
∀h t s. Stream.append (h :: t) s = Stream.stream h (Stream.append t s)
⊦ ∀w.
(Byte.Bits.toWord (drop 8 (Word16.Bits.fromWord w)),
Byte.Bits.toWord (take 8 (Word16.Bits.fromWord w))) = Word16.toBytes w
⊦ ∀p s.
parse p s = Option.none ∨
∃b s'. parse p s = Option.some (b, s') ∧ Stream.isProperSuffix s' s
⊦ (∀l. take 0 l = []) ∧
∀n h t. take (Natural.suc n) (h :: t) = h :: take n t
⊦ ∀p.
isParser p ⇔
∀x xs. Option.case T (λ(y, xs'). Stream.isSuffix xs' xs) (p x xs)
⊦ (∀m. Natural.≤ m 0 ⇔ m = 0) ∧
∀m n. Natural.≤ m (Natural.suc n) ⇔ m = Natural.suc n ∨ Natural.≤ m n
⊦ (∀h t. nth 0 (h :: t) = h) ∧
∀h t n. nth (Natural.suc n) (h :: t) = nth n t
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀m n q r.
m = Natural.+ (Natural.* q n) r ∧ Natural.< r n ⇒
Natural.div m n = q ∧ Natural.mod m n = r
⊦ (∀p. parse p Stream.error = Option.none) ∧
(∀p. parse p Stream.eof = Option.none) ∧
∀p a s. parse p (Stream.stream a s) = destParser p a s
⊦ Byte.Bits.toWord [] = Byte.fromNatural 0 ∧
∀h t.
Byte.Bits.toWord (h :: t) =
if h then
Byte.+ (Byte.shiftLeft (Byte.Bits.toWord t) 1) (Byte.fromNatural 1)
else Byte.shiftLeft (Byte.Bits.toWord t) 1
⊦ Word16.Bits.toWord [] = Word16.fromNatural 0 ∧
∀h t.
Word16.Bits.toWord (h :: t) =
if h then
Word16.+ (Word16.shiftLeft (Word16.Bits.toWord t) 1)
(Word16.fromNatural 1)
else Word16.shiftLeft (Word16.Bits.toWord t) 1
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀p e.
strongInverse p e ⇔
inverse p e ∧
∀s x s'. parse p s = Option.some (x, s') ⇒ s = Stream.append (e x) s'
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)
⊦ (∀f. zipWith f [] [] = []) ∧
∀f h1 h2 t1 t2.
zipWith f (h1 :: t1) (h2 :: t2) = f h1 h2 :: zipWith f t1 t2
⊦ ∀b.
∃x0 x1 x2 x3 x4 x5 x6 x7.
b =
Byte.Bits.toWord (x0 :: x1 :: x2 :: x3 :: x4 :: x5 :: x6 :: x7 :: [])
⊦ ∀f p s.
parse (partialMap f p) s =
Option.case Option.none
(λ(b, s'). Option.case Option.none (λc. Option.some (c, s')) (f b))
(parse p s)
⊦ ∀m n p.
Natural.+ m n = Natural.+ n m ∧
Natural.+ (Natural.+ m n) p = Natural.+ m (Natural.+ n p) ∧
Natural.+ m (Natural.+ n p) = Natural.+ n (Natural.+ m p)
⊦ ∀l n.
Byte.shiftRight (Byte.Bits.toWord l) n =
if Natural.≤ (length l) Byte.width then
if Natural.≤ (length l) n then Byte.Bits.toWord []
else Byte.Bits.toWord (drop n l)
else if Natural.≤ Byte.width n then Byte.Bits.toWord []
else Byte.Bits.toWord (drop n (take Byte.width l))
⊦ (∀n. Natural.+ 0 n = n) ∧ (∀m. Natural.+ m 0 = m) ∧
(∀m n. Natural.+ (Natural.suc m) n = Natural.suc (Natural.+ m n)) ∧
∀m n. Natural.+ m (Natural.suc n) = Natural.suc (Natural.+ m n)
⊦ (∀q. Byte.Bits.compare q [] [] ⇔ q) ∧
∀q h1 h2 t1 t2.
Byte.Bits.compare q (h1 :: t1) (h2 :: t2) ⇔
Byte.Bits.compare (¬h1 ∧ h2 ∨ ¬(h1 ∧ ¬h2) ∧ q) t1 t2
⊦ (∀q. Word16.Bits.compare q [] [] ⇔ q) ∧
∀q h1 h2 t1 t2.
Word16.Bits.compare q (h1 :: t1) (h2 :: t2) ⇔
Word16.Bits.compare (¬h1 ∧ h2 ∨ ¬(h1 ∧ ¬h2) ∧ q) t1 t2
⊦ (∀e b f. Stream.case e b f Stream.error = e) ∧
(∀e b f. Stream.case e b f Stream.eof = b) ∧
∀e b f a s. Stream.case e b f (Stream.stream a s) = f a s
⊦ ∀pb pc s.
parse (parsePair pb pc) s =
Option.case Option.none
(λ(b, s').
Option.case Option.none (λ(c, s''). Option.some ((b, c), s''))
(parse pc s')) (parse pb s)
⊦ ∀p q r.
(p ∨ q ⇔ q ∨ p) ∧ ((p ∨ q) ∨ r ⇔ p ∨ q ∨ r) ∧ (p ∨ q ∨ r ⇔ q ∨ p ∨ r) ∧
(p ∨ p ⇔ p) ∧ (p ∨ p ∨ q ⇔ p ∨ q)
⊦ (∀n. Natural.* 0 n = 0) ∧ (∀m. Natural.* m 0 = 0) ∧
(∀n. Natural.* 1 n = n) ∧ (∀m. Natural.* m 1 = m) ∧
(∀m n. Natural.* (Natural.suc m) n = Natural.+ (Natural.* m n) n) ∧
∀m n. Natural.* m (Natural.suc n) = Natural.+ m (Natural.* m n)
⊦ ∀p0 p1.
encoder.encode1 p0 p1 =
let b00 = Byte.shiftLeft p0 2 in
let b01 = Byte.shiftRight (Byte.and p1 (Byte.fromNatural 192)) 6 in
let b0 = Byte.or (Byte.fromNatural 192) (Byte.or b00 b01) in
let b10 = Byte.and p1 (Byte.fromNatural 63) in
let b1 = Byte.or (Byte.fromNatural 128) b10 in
b0 :: b1 :: []
⊦ ∀ch.
encoder ch =
let (pl, pos) = Char.destChar ch in
let p = Char.destPlane pl in
let (p0, p1) = Word16.toBytes (Char.destPosition pos) in
if p = Byte.fromNatural 0 then
if p0 = Byte.fromNatural 0 ∧ ¬Byte.bit p1 7 then p1 :: []
else if Byte.and (Byte.fromNatural 248) p0 = Byte.fromNatural 0 then
encoder.encode1 p0 p1
else encoder.encode2 p0 p1
else encoder.encode3 p p0 p1
⊦ ∀b0 s.
decoder.parse b0 s =
if Byte.bit b0 7 then
if Byte.bit b0 6 then
if Byte.bit b0 5 then
if Byte.bit b0 4 then
if Byte.bit b0 3 then Option.none
else
parse
(partialMap (decoder.decode3 b0)
parseThreeContinuationBytes) s
else
parse
(partialMap (decoder.decode2 b0) parseTwoContinuationBytes) s
else
parse (partialMap (decoder.decode1 b0) parseContinuationByte) s
else Option.none
else
let pl = Char.mkPlane (Byte.fromNatural 0) in
let pos =
Char.mkPosition (Word16.fromBytes (Byte.fromNatural 0) b0) in
let ch = Char.mkChar (pl, pos) in
Option.some (ch, s)
⊦ ∀pl pos.
Char.isChar (pl, pos) ⇔
let pli = Char.destPlane pl in
let posi = Char.destPosition pos in
¬(pli = Byte.fromNatural 0) ∨
Word16.< posi (Word16.fromNatural 55296) ∨
Word16.< (Word16.fromNatural 57343) posi ∧
Word16.< posi (Word16.fromNatural 65534)
⊦ ∀b0 b1.
decoder.decode1 b0 b1 =
let pl = Char.mkPlane (Byte.fromNatural 0) in
let p0 = Byte.shiftRight (Byte.and b0 (Byte.fromNatural 28)) 2 in
let y1 = Byte.shiftLeft (Byte.and b0 (Byte.fromNatural 3)) 6 in
let x1 = Byte.and b1 (Byte.fromNatural 63) in
let p1 = Byte.or y1 x1 in
if p0 = Byte.fromNatural 0 ∧ Byte.< p1 (Byte.fromNatural 128) then
Option.none
else
let pos = Char.mkPosition (Word16.fromBytes p0 p1) in
let ch = Char.mkChar (pl, pos) in
Option.some ch
⊦ ∀p0 p1.
encoder.encode2 p0 p1 =
let b00 = Byte.shiftRight (Byte.and p0 (Byte.fromNatural 240)) 4 in
let b0 = Byte.or (Byte.fromNatural 224) b00 in
let b10 = Byte.shiftLeft (Byte.and p0 (Byte.fromNatural 15)) 2 in
let b11 = Byte.shiftRight (Byte.and p1 (Byte.fromNatural 192)) 6 in
let b1 = Byte.or (Byte.fromNatural 128) (Byte.or b10 b11) in
let b20 = Byte.and p1 (Byte.fromNatural 63) in
let b2 = Byte.or (Byte.fromNatural 128) b20 in
b0 :: b1 :: b2 :: []
⊦ ∀b0 b1 b2 b3.
decoder.decode3 b0 (b1, b2, b3) =
let w = Byte.shiftLeft (Byte.and b0 (Byte.fromNatural 7)) 2 in
let z = Byte.shiftRight (Byte.and b1 (Byte.fromNatural 48)) 4 in
let p = Byte.or w z in
if p = Byte.fromNatural 0 ∨ Byte.< (Byte.fromNatural 16) p then
Option.none
else
let pl = Char.mkPlane p in
let z0 = Byte.shiftLeft (Byte.and b1 (Byte.fromNatural 15)) 4 in
let y0 = Byte.shiftRight (Byte.and b2 (Byte.fromNatural 60)) 2 in
let p0 = Byte.or z0 y0 in
let y1 = Byte.shiftLeft (Byte.and b2 (Byte.fromNatural 3)) 6 in
let x1 = Byte.and b3 (Byte.fromNatural 63) in
let p1 = Byte.or y1 x1 in
let pos = Char.mkPosition (Word16.fromBytes p0 p1) in
let ch = Char.mkChar (pl, pos) in
Option.some ch
⊦ ∀b0 b1 b2.
decoder.decode2 b0 (b1, b2) =
let z0 = Byte.shiftLeft (Byte.and b0 (Byte.fromNatural 15)) 4 in
let y0 = Byte.shiftRight (Byte.and b1 (Byte.fromNatural 60)) 2 in
let p0 = Byte.or z0 y0 in
if Byte.< p0 (Byte.fromNatural 8) ∨
Byte.≤ (Byte.fromNatural 216) p0 ∧ Byte.≤ p0 (Byte.fromNatural 223)
then Option.none
else
let y1 = Byte.shiftLeft (Byte.and b1 (Byte.fromNatural 3)) 6 in
let x1 = Byte.and b2 (Byte.fromNatural 63) in
let p1 = Byte.or y1 x1 in
if p0 = Byte.fromNatural 255 ∧ Byte.≤ (Byte.fromNatural 254) p1 then
Option.none
else
let pl = Char.mkPlane (Byte.fromNatural 0) in
let pos = Char.mkPosition (Word16.fromBytes p0 p1) in
let ch = Char.mkChar (pl, pos) in
Option.some ch
⊦ ∀p p0 p1.
encoder.encode3 p p0 p1 =
let b00 = Byte.shiftRight (Byte.and p (Byte.fromNatural 28)) 2 in
let b0 = Byte.or (Byte.fromNatural 240) b00 in
let b10 = Byte.shiftLeft (Byte.and p (Byte.fromNatural 3)) 4 in
let b11 = Byte.shiftRight (Byte.and p0 (Byte.fromNatural 240)) 4 in
let b1 = Byte.or (Byte.fromNatural 128) (Byte.or b10 b11) in
let b20 = Byte.shiftLeft (Byte.and p0 (Byte.fromNatural 15)) 2 in
let b21 = Byte.shiftRight (Byte.and p1 (Byte.fromNatural 192)) 6 in
let b2 = Byte.or (Byte.fromNatural 128) (Byte.or b20 b21) in
let b30 = Byte.and p1 (Byte.fromNatural 63) in
let b3 = Byte.or (Byte.fromNatural 128) b30 in
b0 :: b1 :: b2 :: b3 :: []