name | function |
version | 1.0 |
description | Basic theory of functions |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
show | Data.Bool Function |
⊦ id = λx. x
⊦ ∀x. id x = x
⊦ ∀f g. (f o g) = λx. f (g x)
⊦ ∀f. surjective f ⇔ ∀y. ∃x. y = f x
⊦ ∀f. (id o f) = f ∧ (f o id) = f
⊦ ∀f g x. (f o g) x = f (g x)
⊦ ∀f g h. (f o (g o h)) = (f o g o h)
⊦ ∀f. injective f ⇔ ∀x1 x2. f x1 = f x2 ⇒ x1 = x2
⊦ T
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀f y. (λx. f x) y = f y
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀f g. f = g ⇔ ∀x. f x = g x