Package function: Function operators and combinators

Information

namefunction
version1.28
descriptionFunction operators and combinators
authorJoe Hurd <joe@gilith.com>
licenseMIT
requiresbool
showData.Bool
Function

Files

Defined Constants

Theorems

id = λx. x

k = λx y. x

x. id x = x

w = λf x. f x x

x. s k x = id

f. f id = f

f. id f = f

f. c (c f) = f

c = λf x y. f y x

s = λf g x. f x (g x)

x y. k x y = x

f x. w f x = f x x

f g. f g = λx. f (g x)

f. surjective f y. x. y = f x

f g x. (f g) x = f (g x)

f x y. c f x y = f y x

f g x. s f g x = f x (g x)

f g h. f (g h) = f g h

f. injective f x1 x2. f x1 = f x2 x1 = x2

f g. (x. y. g y = f x) h. f = g h

f. (y. x. f x = y) P. (x. P (f x)) y. P y

f. (y. x. f x = y) P. (x. P (f x)) y. P y

f g. (x y. g x = g y f x = f y) h. f = h g

Input Type Operators

Input Constants

Assumptions

T

¬F T

¬T F

t. t t

() = λp. p ((select) p)

t. (x. t) t

() = λp. p = λx. T

t. ¬¬t t

t. (T t) t

t. (t T) t

t. T t t

t. (F t) ¬t

t. (t F) ¬t

() = λp q. p q p

t. (t T) (t F)

f y. (let x y in f x) = f y

x y. x = y y = x

x y. x = y y = x

() = λp q. (λf. f p q) = λf. f T T

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

f g. (x. f x = g x) f = g

() = λp q. r. (p r) (q r) r

p. (x. y. p x y) y. x. p x (y x)