name | function-comb |
version | 1.0 |
description | function-comb |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ ∀x. Function.id x = x
⊦ ∀f. Function.o Function.id f = f ∧ Function.o f Function.id = f
⊦ ∀f g x. Function.o f g x = f (g x)
⊦ ∀f g h. Function.o f (Function.o g h) = Function.o (Function.o f g) h
⊦ T
⊦ Function.id = λx. x
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀f y. (λx. f x) y = f y
⊦ ∀f g. Function.o f g = λx. f (g x)
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀f g. f = g ⇔ ∀x. f x = g x