Package function-thm: Properties of function operators and combinators

Information

namefunction-thm
version1.23
descriptionProperties of function operators and combinators
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2012-01-29
requiresbool
function-def
showData.Bool

Files

Theorems

x. Function.id x = x

x. Function.s Function.k x = Function.id

f. Function.∘ f Function.id = f

f. Function.∘ Function.id f = f

f. Function.c (Function.c f) = f

x y. Function.k x y = x

f x. Function.w f x = f x x

f g x. Function.∘ f g x = f (g x)

f x y. Function.c f x y = f y x

f g x. Function.s f g x = f x (g x)

f g h. Function.∘ f (Function.∘ g h) = Function.∘ (Function.∘ f g) h

f g. (x. y. g y = f x) h. f = Function.∘ g h

f. (y. x. f x = y) P. (x. P (f x)) y. P y

f. (y. x. f x = y) P. (x. P (f x)) y. P y

f g. (x y. g x = g y f x = f y) h. f = Function.∘ h g

Input Type Operators

Input Constants

Assumptions

T

Function.id = λx. x

Function.k = λx y. x

¬F T

¬T F

t. t t

() = λp. p ((select) p)

t. (x. t) t

() = λp. p = λx. T

Function.w = λf x. f x x

t. ¬¬t t

t. (T t) t

t. (t T) t

t. T t t

Function.c = λf x y. f y x

t. (F t) ¬t

t. (t F) ¬t

Function.s = λf g x. f x (g x)

() = λp q. p q p

t. (t T) (t F)

f y. (let x y in f x) = f y

x y. x = y y = x

x y. x = y y = x

f g. Function.∘ f g = λx. f (g x)

() = λp q. (λf. f p q) = λf. f T T

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

f g. (x. f x = g x) f = g

() = λp q. r. (p r) (q r) r

p. (x. y. p x y) y. x. p x (y x)