Package gfp: Parametric theory of GF(p) finite fields

Information

namegfp
version1.14
descriptionParametric theory of GF(p) finite fields
authorJoe Hurd <joe@gilith.com>
licenseMIT
requiresbool
pair
natural
relation
natural-divides
natural-gcd
natural-prime
gfp-witness
showData.Bool
Data.Pair
Number.GF(p)
Number.Natural

Files

Defined Type Operator

Defined Constants

Theorems

¬(oddprime = 0)

1 < oddprime

¬(oddprime = 1)

¬divides oddprime 1

fromNatural oddprime = 0

oddprime mod oddprime = 0

0 mod oddprime = 0

2 < oddprime

x. toNatural x < oddprime

¬(oddprime = 2)

¬divides oddprime 2

¬divides 2 oddprime

~0 = 0

x. ~~x = x

x. fromNatural (toNatural x) = x

n. n mod oddprime < oddprime

¬(1 = 0)

1 mod oddprime = 1

x. x + 0 = x

x. 0 + x = x

x. toNatural x div oddprime = 0

¬(2 = 0)

inv 1 = 1

x. x * 0 = 0

x. x + ~x = 0

x. 0 * x = 0

x. ~x + x = 0

x. toNatural x mod oddprime = toNatural x

x. x * 1 = x

x. 1 * x = x

x. toNatural (fromNatural x) = x mod oddprime

2 mod oddprime = 2

x. ~x = fromNatural (oddprime - toNatural x)

x y. x * y = y * x

x y. x + y = y + x

n. divides oddprime n n mod oddprime = 0

n. n < oddprime n mod oddprime = n

x. fromNatural x = 0 divides oddprime x

n. n mod oddprime mod oddprime = n mod oddprime

x y. x < y ¬(y x)

x y. x - y = x + ~y

x. ~x = 0 x = 0

x y. x < y toNatural x < toNatural y

x y. x y toNatural x toNatural y

x y. x * ~y = ~(x * y)

x y. ~x * y = ~(x * y)

x y. ~x = ~y x = y

x y. toNatural x = toNatural y x = y

x. ¬(x = 0) inv (inv x) = x

x y. x + y = x y = 0

x y. y + x = x y = 0

x y. ~x + ~y = ~(x + y)

x1 y1. fromNatural (x1 * y1) = fromNatural x1 * fromNatural y1

x1 y1. fromNatural (x1 + y1) = fromNatural x1 + fromNatural y1

x. ¬(x = 0) ¬(inv x = 0)

x y. toNatural (x * y) = toNatural x * toNatural y mod oddprime

x y. toNatural (x + y) = (toNatural x + toNatural y) mod oddprime

x y z. x * y * z = x * (y * z)

x y z. x + y + z = x + (y + z)

x y z. x + y = x + z y = z

x y z. y + x = z + x y = z

x. ¬(x = 0) x * inv x = 1

x. ¬(x = 0) inv x * x = 1

x y. ¬(x = 0) x * (y / x) = y

x y. ¬(x = 0) y / x * x = y

x y. ¬(x = 0) x * y / x = y

x y. ¬(x = 0) y * x / x = y

m n. divides oddprime (m * n) divides oddprime m divides oddprime n

x y. fromNatural x = fromNatural y x mod oddprime = y mod oddprime

x y. ¬(x = 0) y / x = y * inv x

x y z. x * (y + z) = x * y + x * z

x y z. (y + z) * x = y * x + z * x

m n. m mod oddprime * (n mod oddprime) mod oddprime = m * n mod oddprime

m n.
    (m mod oddprime + n mod oddprime) mod oddprime = (m + n) mod oddprime

x y. x * y = x x = 0 y = 1

x y. y * x = x x = 0 y = 1

x y. x * y = 0 x = 0 y = 0

x. ¬(x = 0) inv x = 1 x = 1

x y. ¬(y = 0) gcdDiv (toNatural y) oddprime x 0 = x / y

x y. x < oddprime y < oddprime fromNatural x = fromNatural y x = y

x y z. x * y = x * z x = 0 y = z

x y z. y * x = z * x x = 0 y = z

x y. ¬(x = 0) ¬(y = 0) inv x = inv y x = y

x y. ¬(x = 0) ¬(y = 0) inv x * inv y = inv (x * y)

u v x1 x2.
    gcd u v = 1 fromNatural u * x2 = fromNatural v * x1
    fromNatural u * gcdDiv u v x1 x2 = x1
    fromNatural v * gcdDiv u v x1 x2 = x2

u v x1 x2.
    gcdDiv u v x1 x2 =
    if u = 1 then x1
    else if v = 1 then x2
    else if even u then gcdDiv (u div 2) v (x1 / 2) x2
    else if even v then gcdDiv u (v div 2) x1 (x2 / 2)
    else if v u then gcdDiv (u - v) v (x1 - x2) x2
    else gcdDiv u (v - u) x1 (x2 - x1)

p.
    (v. p 1 v) (u. ¬(u = 1) p u 1)
    (u v. gcd (2 * u) v = 1 ¬(v = 1) p u v p (2 * u) v)
    (u v. gcd u (2 * v) = 1 ¬(u = 1) odd u p u v p u (2 * v))
    (u v. gcd u v = 1 even u ¬(v = 1) odd v p u v p (v + u) v)
    (u v. gcd u v = 1 ¬(u = 1) odd u even v p u v p u (u + v))
    u v. gcd u v = 1 p u v

p.
    (v x1 x2. p 1 v x1 x2 x1) (u x1 x2. p u 1 x1 x2 x2)
    (u v x1 x2 g.
       gcd (2 * u) v = 1 p u v x1 x2 g p (2 * u) v (2 * x1) x2 g)
    (u v x1 x2 g.
       gcd u (2 * v) = 1 p u v x1 x2 g p u (2 * v) x1 (2 * x2) g)
    (u v x1 x2 g.
       gcd u v = 1 p u v x1 x2 g p (v + u) v (x2 + x1) x2 g)
    (u v x1 x2 g.
       gcd u v = 1 p u v x1 x2 g p u (u + v) x1 (x1 + x2) g)
    u v x1 x2. gcd u v = 1 p u v x1 x2 (gcdDiv u v x1 x2)

Input Type Operators

Input Constants

Assumptions

T

odd oddprime

prime oddprime

¬prime 0

¬prime 1

¬F T

¬T F

odd 0 F

bit0 0 = 0

t. t t

n. 0 n

F p. p

t. t ¬t

(¬) = λp. p F

() = λP. P ((select) P)

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx. T

t. ¬¬t t

t. (T t) t

t. (t T) t

t. F t F

t. T t t

t. t T t

t. F t T

t. T t t

t. t T T

t. F t t

t. T t T

t. t F t

t. t T T

n. ¬(suc n = 0)

n. 0 * n = 0

n. 0 + n = n

m. m + 0 = m

a. gcd 0 a = a

a. gcd a 0 = a

t. (F t) ¬t

t. (t F) ¬t

t. t F ¬t

n. even (2 * n)

n. bit1 n = suc (bit0 n)

n. ¬even n odd n

n. ¬odd n even n

m. 1 * m = m

m n. m m + n

() = λp q. p q p

t. (t T) (t F)

n. even (suc n) ¬even n

n. odd (suc n) ¬odd n

m. m 0 m = 0

t1 t2. (if F then t1 else t2) = t2

t1 t2. (if T then t1 else t2) = t1

p x. p x p ((select) p)

n. 0 < n ¬(n = 0)

n. bit0 (suc n) = suc (suc (bit0 n))

a. divides 2 a even a

x y. x = y y = x

x y. x = y y = x

t1 t2. t1 t2 t2 t1

m n. m * n = n * m

m n. m + n = n + m

a b. gcd a b = gcd b a

m n. m < n m n

m n. m n n m

m n. m + n - m = n

a. divides a 1 a = 1

n. 2 * n = n + n

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. ¬(m n) n < m

m n. suc m n m < n

P. (b. P b) P T P F

() = λp q. (λf. f p q) = λf. f T T

n. ¬(n = 0) n mod n = 0

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

m n. m < n m div n = 0

m n. m < n m mod n = m

m n. m + suc n = suc (m + n)

m n. suc m + n = suc (m + n)

m n. n < m + n 0 < m

m n. suc m = suc n m = n

a b. gcd a (a + b) = gcd a b

a b. gcd (b + a) b = gcd a b

t1 t2. ¬(t1 t2) ¬t1 ¬t2

m n. even (m * n) even m even n

m n. even (m + n) even m even n

m n. ¬(n = 0) m mod n < n

n. even n m. n = 2 * m

P. (p. P p) p1 p2. P (p1, p2)

m n. m n d. n = m + d

f g. (x. f x = g x) f = g

() = λp q. r. (p r) (q r) r

m n. m n m < n m = n

m n. n m m - n + n = m

m n. m n n m m = n

PAIR'. fn. a0 a1. fn (a0, a1) = PAIR' a0 a1

P Q. (x. P Q x) P x. Q x

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

m n. m < n m n ¬(m = n)

m n. ¬(m = 0) m * n div m = n

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

x y z. x = y y = z x = z

p q r. p q r p q r

t1 t2 t3. (t1 t2) t3 t1 t2 t3

m n p. m * (n * p) = m * n * p

m n p. m + (n + p) = m + n + p

m n p. m + n < m + p n < p

m n p. n + m < p + m n < p

m n p. m + n m + p n p

P. (x. y. P x y) y. x. P x (y x)

m n. m suc n m = suc n m n

m n. m * n = 0 m = 0 n = 0

P. P 0 (n. P n P (suc n)) n. P n

a b. s t. distance (s * a) (t * b) = gcd a b

a b. ¬(a = 0) (divides a b b mod a = 0)

m n. ¬(n = 0) m mod n mod n = m mod n

p n. prime p ¬divides p n gcd p n = 1

m n p. m * (n + p) = m * n + m * p

m n p. (m + n) * p = m * p + n * p

a. divides a 2 a = 1 a = 2

P. (n. (m. m < n P m) P n) n. P n

p g h. f. x. f x = if p x then f (g x) else h x

P Q. (x. P x) (x. Q x) x. P x Q x

m n. ¬(n = 0) m div n * n + m mod n = m

m n p. m * n = m * p m = 0 n = p

m n p. m * n m * p m = 0 n p

p m n. prime p (divides p (m * n) divides p m divides p n)

m n p. m * n < m * p ¬(m = 0) n < p

m n p. m * p < n * p m < n ¬(p = 0)

m n p. distance m n = p m + p = n n + p = m

m n p. ¬(n = 0) m mod n * (p mod n) mod n = m * p mod n

a b n. ¬(n = 0) (a mod n + b mod n) mod n = (a + b) mod n

a b c. gcd a (b * c) = 1 gcd a b = 1 gcd a c = 1

a b c. gcd (b * c) a = 1 gcd b a = 1 gcd c a = 1