Package gfp-div-def: Definition of GF(p) field division

Information

namegfp-div-def
version1.13
descriptionDefinition of GF(p) field division
authorJoe Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2011-11-28
requiresbool
natural
natural-divides
natural-gcd
natural-prime
gfp-witness
gfp-def
showData.Bool
Number.GF(p)
Number.Natural

Files

Defined Constants

Theorems

x. ¬(x = 0) inv x * x = 1

x y. ¬(x = 0) x * y / x = y

Input Type Operators

Input Constants

Assumptions

T

prime oddprime

¬(oddprime = 0)

¬F T

F p. p

fromNatural oddprime = 0

0 mod oddprime = 0

(¬) = λp. p F

() = λP. P ((select) P)

() = λp. p = λx. T

~0 = 0

t. ¬¬t t

t. T t t

t. T t t

x. fromNatural (toNatural x) = x

t. t F ¬t

x. 0 + x = x

() = λp q. p q p

x. x * 0 = 0

x. x + ~x = 0

x. toNatural x mod oddprime = toNatural x

x. 1 * x = x

x. toNatural (fromNatural x) = x mod oddprime

x y. x * y = y * x

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

x y. ~x * y = ~(x * y)

x y. toNatural x = toNatural y x = y

x y. ~x + ~y = ~(x + y)

x1 y1. fromNatural (x1 * y1) = fromNatural x1 * fromNatural y1

x1 y1. fromNatural (x1 + y1) = fromNatural x1 + fromNatural y1

() = λp q. r. (p r) (q r) r

P Q. P (x. Q x) x. P Q x

x y z. x * y * z = x * (y * z)

x y z. y + x = z + x y = z

P. (x. y. P x y) y. x. P x (y x)

a b. s t. distance (s * a) (t * b) = gcd a b

a b. ¬(a = 0) (divides a b b mod a = 0)

p n. prime p ¬divides p n gcd p n = 1

m n p. distance m n = p m + p = n n + p = m