Package gfp-div-def: Definition of GF(p) field division

Information

namegfp-div-def
version1.61
descriptionDefinition of GF(p) field division
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2014-06-12
requiresbool
gfp-def
gfp-witness
natural-divides
natural-gcd
natural-prime
showData.Bool
Number.GF(p)
Number.Natural

Files

Defined Constants

Theorems

x. ¬(x = 0) inv x * x = 1

x y. ¬(x = 0) x * y / x = y

External Type Operators

External Constants

Assumptions

prime oddprime

¬(oddprime = 0)

¬

p. p

fromNatural oddprime = 0

0 mod oddprime = 0

(¬) = λp. p

() = λp. p ((select) p)

() = λp. p = λx.

t. ¬¬t t

t. t t

t. t t

x. fromNatural (toNatural x) = x

t. t ¬t

x. 0 + x = x

() = λp q. p q p

x. x * 0 = 0

x. toNatural x mod oddprime = toNatural x

x. 1 * x = x

n. toNatural (fromNatural n) = n mod oddprime

x y. x * y = y * x

() = λp q. (λf. f p q) = λf. f

() = λp. q. (x. p x q) q

x y. toNatural x = toNatural y x = y

x1 y1. fromNatural (x1 * y1) = fromNatural x1 * fromNatural y1

x1 y1. fromNatural (x1 + y1) = fromNatural x1 + fromNatural y1

p q. p (x. q x) x. p q x

x y z. x * y * z = x * (y * z)

r. (x. y. r x y) f. x. r x (f x)

a b. ¬(a = 0) (divides a b b mod a = 0)

p n. prime p ¬divides p n gcd p n = 1

a b. ¬(a = 0) s t. t * b + gcd b a = s * a