Package gfp-div-exp-def: Definition of a GF(p) exponentiation algorithm based on division
Information
name | gfp-div-exp-def |
version | 1.45 |
description | Definition of a GF(p) exponentiation algorithm based on division |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2014-11-04 |
checksum | 1b2f693d364c2fda423a01b20fd9013fd4b87e65 |
requires | bool gfp-div-def list |
show | Data.Bool Data.List Number.GF(p) |
Files
- Package tarball gfp-div-exp-def-1.45.tgz
- Theory source file gfp-div-exp-def.thy (included in the package tarball)
Defined Constant
- Number
- GF(p)
- expDiv
- GF(p)
Theorems
⊦ ∀b n d f p. expDiv b n d f p [] = if b then n / d else d / n
⊦ ∀b n d f p h t.
expDiv b n d f p (h :: t) =
let s ← p / f in expDiv (¬b) d (if h then n / s else n) s f t
External Type Operators
- →
- bool
- Data
- List
- list
- List
- Number
- GF(p)
- gfp
- GF(p)
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- cond
- ⊤
- List
- ::
- []
- Bool
- Number
- GF(p)
- /
- GF(p)
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)