Package gfp-div-exp-def: Definition of a GF(p) exponentiation algorithm based on division

Information

namegfp-div-exp-def
version1.5
descriptionDefinition of a GF(p) exponentiation algorithm based on division
authorJoe Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2012-03-08
requiresbool
list
showData.Bool
Data.List
Number.GF(p)

Files

Defined Constant

Theorems

b n d f p. expDiv b n d f p [] = if b then n / d else d / n

b n d f p h t.
    expDiv b n d f p (h :: t) =
    let s p / f in expDiv (¬b) d (if h then n / s else n) s f t

Input Type Operators

Input Constants

Assumptions

() = λp. p ((select) p)

() = λp. p = λx.

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f

() = λp. q. (x. p x q) q

p. (x. y. p x y) y. x. p x (y x)

NIL' CONS'.
    fn. fn [] = NIL' a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)