Package gfp-div-gcd-def: Definition of a GF(p) division algorithm based on gcd
Information
name | gfp-div-gcd-def |
version | 1.4 |
description | Definition of a GF(p) division algorithm based on gcd |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2011-11-28 |
requires | bool pair relation |
show | Data.Bool Data.Pair Number.GF(p) Number.Natural |
Files
- Package tarball gfp-div-gcd-def-1.4.tgz
- Theory file gfp-div-gcd-def.thy (included in the package tarball)
Defined Constant
- Number
- GF(p)
- gcdDiv
- GF(p)
Theorem
⊦ ∀u v x1 x2.
gcdDiv u v x1 x2 =
if u = 1 then x1
else if v = 1 then x2
else if even u then gcdDiv (u div 2) v (x1 / 2) x2
else if even v then gcdDiv u (v div 2) x1 (x2 / 2)
else if v ≤ u then gcdDiv (u - v) v (x1 - x2) x2
else gcdDiv u (v - u) x1 (x2 - x1)
Input Type Operators
- →
- bool
- Data
- Pair
- ×
- Pair
- Number
- GF(p)
- gfp
- Natural
- natural
- GF(p)
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- F
- T
- Pair
- ,
- Bool
- Number
- GF(p)
- -
- /
- fromNatural
- Natural
- -
- ≤
- bit0
- bit1
- div
- even
- zero
- GF(p)
Assumptions
⊦ T
⊦ ¬F ⇔ T
⊦ ¬T ⇔ F
⊦ F ⇔ ∀p. p
⊦ ∀t. t ∨ ¬t
⊦ (¬) = λp. p ⇒ F
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. T
⊦ ∀t. F ∧ t ⇔ F
⊦ ∀t. T ∧ t ⇔ t
⊦ ∀t. t ⇒ T ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t1 t2. (if F then t1 else t2) = t2
⊦ ∀t1 t2. (if T then t1 else t2) = t1
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀P. (∀p. P p) ⇔ ∀p1 p2. P (p1, p2)
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀PAIR'. ∃fn. ∀a0 a1. fn (a0, a1) = PAIR' a0 a1
⊦ ∀p g h. ∃f. ∀x. f x = if p x then f (g x) else h x