Package hol-monad: HOL monad theories
Information
name | hol-monad |
version | 1.0 |
description | HOL monad theories |
author | HOL developers <hol-developers@lists.sourceforge.net> |
license | MIT |
checksum | 8e2fbe142b1e7329eb30674b33010a3ab950547a |
requires | base hol-base |
show | Data.Bool Data.List Data.Pair Function HOL4 Number.Natural Relation |
Files
- Package tarball hol-monad-1.0.tgz
- Theory source file hol-monad.thy (included in the package tarball)
Defined Constants
- HOL4
- errorStateMonad
- errorStateMonad.mapM
- errorStateMonad.sequence
- errorStateMonad.BIND
- errorStateMonad.ES_APPLY
- errorStateMonad.ES_CHOICE
- errorStateMonad.ES_FAIL
- errorStateMonad.ES_GUARD
- errorStateMonad.ES_LIFT2
- errorStateMonad.EXT
- errorStateMonad.FOR
- errorStateMonad.FOREACH
- errorStateMonad.IGNORE_BIND
- errorStateMonad.JOIN
- errorStateMonad.MCOMP
- errorStateMonad.MMAP
- errorStateMonad.NARROW
- errorStateMonad.READ
- errorStateMonad.UNIT
- errorStateMonad.WIDEN
- errorStateMonad.WRITE
- state_transformer
- state_transformer.mapM
- state_transformer.sequence
- state_transformer.BIND
- state_transformer.EXT
- state_transformer.FOR
- state_transformer.FOREACH
- state_transformer.IGNORE_BIND
- state_transformer.JOIN
- state_transformer.MCOMP
- state_transformer.MMAP
- state_transformer.MWHILE
- state_transformer.NARROW
- state_transformer.READ
- state_transformer.UNIT
- state_transformer.WIDEN
- state_transformer.WRITE
- errorStateMonad
Theorems
⊦ state_transformer.UNIT = pair.CURRY id
⊦ errorStateMonad.UNIT = pair.CURRY Data.Option.some
⊦ state_transformer.JOIN = state_transformer.EXT id
⊦ state_transformer.EXT state_transformer.UNIT = id
⊦ state_transformer.MMAP id = id
⊦ errorStateMonad.MMAP id = id
⊦ state_transformer.sequence [] = state_transformer.UNIT []
⊦ errorStateMonad.sequence [] = errorStateMonad.UNIT []
⊦ errorStateMonad.ES_CHOICE errorStateMonad.ES_FAIL xM = xM
⊦ errorStateMonad.ES_CHOICE xM errorStateMonad.ES_FAIL = xM
⊦ errorStateMonad.BIND errorStateMonad.ES_FAIL fM = errorStateMonad.ES_FAIL
⊦ state_transformer.JOIN ∘ state_transformer.UNIT = id
⊦ errorStateMonad.JOIN ∘ errorStateMonad.UNIT = id
⊦ ∀s. errorStateMonad.ES_FAIL s = Data.Option.none
⊦ state_transformer.mapM f [] = state_transformer.UNIT []
⊦ errorStateMonad.mapM f [] = errorStateMonad.UNIT []
⊦ state_transformer.EXT f ∘ state_transformer.UNIT = f
⊦ state_transformer.JOIN ∘ state_transformer.MMAP state_transformer.UNIT =
id
⊦ errorStateMonad.JOIN ∘ errorStateMonad.MMAP errorStateMonad.UNIT = id
⊦ ∀s. pair.UNCURRY state_transformer.UNIT s = s
⊦ ∀k. state_transformer.BIND k state_transformer.UNIT = k
⊦ ∀k. errorStateMonad.BIND k errorStateMonad.UNIT = k
⊦ state_transformer.EXT f =
state_transformer.JOIN ∘ state_transformer.MMAP f
⊦ state_transformer.MMAP f =
state_transformer.EXT (state_transformer.UNIT ∘ f)
⊦ state_transformer.BIND m f = state_transformer.EXT f m
⊦ ∀x. snd ∘ state_transformer.UNIT x = id
⊦ ∀z. state_transformer.JOIN z = state_transformer.BIND z id
⊦ ∀z. errorStateMonad.JOIN z = errorStateMonad.BIND z id
⊦ ∀x. state_transformer.UNIT x = λs. (x, s)
⊦ errorStateMonad.MCOMP g f = errorStateMonad.EXT g ∘ f
⊦ errorStateMonad.ES_APPLY (errorStateMonad.UNIT f) xM =
errorStateMonad.MMAP f xM
⊦ state_transformer.JOIN ∘ state_transformer.MMAP state_transformer.JOIN =
state_transformer.JOIN ∘ state_transformer.JOIN
⊦ errorStateMonad.JOIN ∘ errorStateMonad.MMAP errorStateMonad.JOIN =
errorStateMonad.JOIN ∘ errorStateMonad.JOIN
⊦ ∀x. fst ∘ state_transformer.UNIT x = const x
⊦ ∀f. state_transformer.mapM f = state_transformer.sequence ∘ map f
⊦ ∀f. errorStateMonad.mapM f = errorStateMonad.sequence ∘ map f
⊦ ∀x. errorStateMonad.UNIT x = λs. Data.Option.some (x, s)
⊦ ∀f. state_transformer.WRITE f = λs. (Data.Unit.(), f s)
⊦ ∀f. state_transformer.READ f = λs. (f s, s)
⊦ errorStateMonad.ES_APPLY (errorStateMonad.UNIT f)
(errorStateMonad.UNIT x) = errorStateMonad.UNIT (f x)
⊦ ∀b.
errorStateMonad.ES_GUARD b =
if b then errorStateMonad.UNIT Data.Unit.()
else errorStateMonad.ES_FAIL
⊦ ∀f.
errorStateMonad.MMAP f ∘ errorStateMonad.UNIT =
errorStateMonad.UNIT ∘ f
⊦ ∀f.
state_transformer.MMAP f ∘ state_transformer.UNIT =
state_transformer.UNIT ∘ f
⊦ ∀f.
state_transformer.EXT f ∘ state_transformer.JOIN =
state_transformer.EXT (state_transformer.EXT f)
⊦ ∀f. errorStateMonad.WRITE f = λs. Data.Option.some (Data.Unit.(), f s)
⊦ ∀f. errorStateMonad.READ f = λs. Data.Option.some (f s, s)
⊦ ∀k x. state_transformer.BIND (state_transformer.UNIT x) k = k x
⊦ ∀k x. errorStateMonad.BIND (errorStateMonad.UNIT x) k = k x
⊦ ∀g m. errorStateMonad.EXT g m = errorStateMonad.BIND m g
⊦ state_transformer.MCOMP g f =
pair.CURRY (pair.UNCURRY g ∘ pair.UNCURRY f)
⊦ state_transformer.EXT (state_transformer.MCOMP g f) =
state_transformer.EXT g ∘ state_transformer.EXT f
⊦ ∀f g.
state_transformer.IGNORE_BIND f g = state_transformer.BIND f (λx. g)
⊦ ∀f g. errorStateMonad.IGNORE_BIND f g = errorStateMonad.BIND f (λx. g)
⊦ ∀k m.
state_transformer.BIND k m =
state_transformer.JOIN (state_transformer.MMAP m k)
⊦ ∀g f. state_transformer.BIND g f = pair.UNCURRY f ∘ g
⊦ ∀k m.
errorStateMonad.BIND k m =
errorStateMonad.JOIN (errorStateMonad.MMAP m k)
⊦ ∀f m. state_transformer.EXT f m = pair.UNCURRY f ∘ m
⊦ ∀g f. state_transformer.MCOMP g f = state_transformer.EXT g ∘ f
⊦ errorStateMonad.ES_CHOICE xM (errorStateMonad.ES_CHOICE yM zM) =
errorStateMonad.ES_CHOICE (errorStateMonad.ES_CHOICE xM yM) zM
⊦ errorStateMonad.MCOMP f (errorStateMonad.MCOMP g h) =
errorStateMonad.MCOMP (errorStateMonad.MCOMP f g) h
⊦ state_transformer.MCOMP f (state_transformer.MCOMP g h) =
state_transformer.MCOMP (state_transformer.MCOMP f g) h
⊦ errorStateMonad.MCOMP g errorStateMonad.UNIT = g ∧
errorStateMonad.MCOMP errorStateMonad.UNIT f = f
⊦ errorStateMonad.IGNORE_BIND errorStateMonad.ES_FAIL xM =
errorStateMonad.ES_FAIL ∧
errorStateMonad.IGNORE_BIND xM errorStateMonad.ES_FAIL =
errorStateMonad.ES_FAIL
⊦ state_transformer.MCOMP g state_transformer.UNIT = g ∧
state_transformer.MCOMP state_transformer.UNIT f = f
⊦ ∀f.
errorStateMonad.MMAP f ∘ errorStateMonad.JOIN =
errorStateMonad.JOIN ∘ errorStateMonad.MMAP (errorStateMonad.MMAP f)
⊦ ∀f.
state_transformer.MMAP f ∘ state_transformer.JOIN =
state_transformer.JOIN ∘
state_transformer.MMAP (state_transformer.MMAP f)
⊦ ∀f m.
state_transformer.MMAP f m =
state_transformer.BIND m (state_transformer.UNIT ∘ f)
⊦ ∀f m.
errorStateMonad.MMAP f m =
errorStateMonad.BIND m (errorStateMonad.UNIT ∘ f)
⊦ ∀f g.
errorStateMonad.MMAP (f ∘ g) =
errorStateMonad.MMAP f ∘ errorStateMonad.MMAP g
⊦ ∀f g.
state_transformer.MMAP (f ∘ g) =
state_transformer.MMAP f ∘ state_transformer.MMAP g
⊦ ∀g f.
errorStateMonad.MCOMP g f =
pair.CURRY (option.OPTION_MCOMP (pair.UNCURRY g) (pair.UNCURRY f))
⊦ errorStateMonad.IGNORE_BIND (errorStateMonad.ES_GUARD ⊥) xM =
errorStateMonad.ES_FAIL ∧
errorStateMonad.IGNORE_BIND (errorStateMonad.ES_GUARD ⊤) xM = xM
⊦ state_transformer.MCOMP (state_transformer.UNIT ∘ g)
(state_transformer.UNIT ∘ f) = state_transformer.UNIT ∘ (g ∘ f)
⊦ ∀f g. fst ∘ state_transformer.MMAP f g = f ∘ (fst ∘ g)
⊦ errorStateMonad.BIND (errorStateMonad.ES_GUARD ⊥) fM =
errorStateMonad.ES_FAIL ∧
errorStateMonad.BIND (errorStateMonad.ES_GUARD ⊤) fM = fM Data.Unit.()
⊦ ∀f xM yM.
errorStateMonad.ES_LIFT2 f xM yM =
errorStateMonad.ES_APPLY (errorStateMonad.MMAP f xM) yM
⊦ ∀fM xM.
errorStateMonad.ES_APPLY fM xM =
errorStateMonad.BIND fM
(λf. errorStateMonad.BIND xM (λx. errorStateMonad.UNIT (f x)))
⊦ state_transformer.sequence =
list.FOLDR
(λm ms.
state_transformer.BIND m
(λx.
state_transformer.BIND ms
(λxs. state_transformer.UNIT (x :: xs))))
(state_transformer.UNIT [])
⊦ errorStateMonad.sequence =
list.FOLDR
(λm ms.
errorStateMonad.BIND m
(λx.
errorStateMonad.BIND ms (λxs. errorStateMonad.UNIT (x :: xs))))
(errorStateMonad.UNIT [])
⊦ ∀f.
state_transformer.WIDEN f =
pair.UNCURRY
(λs1 s2. bool.LET (pair.UNCURRY (λr s3. (r, s1, s3))) (f s2))
⊦ ∀xM yM s.
errorStateMonad.ES_CHOICE xM yM s =
option.option_CASE (xM s) (yM s) (λv1. Data.Option.some v1)
⊦ ∀k m n.
state_transformer.BIND k (λa. state_transformer.BIND (m a) n) =
state_transformer.BIND (state_transformer.BIND k m) n
⊦ ∀k m n.
errorStateMonad.BIND k (λa. errorStateMonad.BIND (m a) n) =
errorStateMonad.BIND (errorStateMonad.BIND k m) n
⊦ state_transformer.mapM f (x :: xs) =
state_transformer.BIND (f x)
(λy.
state_transformer.BIND (state_transformer.mapM f xs)
(λys. state_transformer.UNIT (y :: ys)))
⊦ errorStateMonad.mapM f (x :: xs) =
errorStateMonad.BIND (f x)
(λy.
errorStateMonad.BIND (errorStateMonad.mapM f xs)
(λys. errorStateMonad.UNIT (y :: ys)))
⊦ ∀v f.
state_transformer.NARROW v f =
λs. bool.LET (pair.UNCURRY (λr s1. (r, snd s1))) (f (v, s))
⊦ ∀g b.
state_transformer.MWHILE g b =
state_transformer.BIND g
(λgv.
if gv then
state_transformer.IGNORE_BIND b (state_transformer.MWHILE g b)
else state_transformer.UNIT Data.Unit.())
⊦ ∀f.
errorStateMonad.WIDEN f =
pair.UNCURRY
(λs1 s2.
option.option_CASE (f s2) Data.Option.none
(λv. pair.pair_CASE v (λr s3. Data.Option.some (r, s1, s3))))
⊦ ∀g f s0.
errorStateMonad.BIND g f s0 =
option.option_CASE (g s0) Data.Option.none
(λv. pair.pair_CASE v (λb s. f b s))
⊦ ∀v f.
errorStateMonad.NARROW v f =
λs.
option.option_CASE (f (v, s)) Data.Option.none
(λv. pair.pair_CASE v (λr s1. Data.Option.some (r, snd s1)))
⊦ (∀a.
state_transformer.FOREACH ([], a) =
state_transformer.UNIT Data.Unit.()) ∧
∀t h a.
state_transformer.FOREACH (h :: t, a) =
state_transformer.BIND (a h) (λu. state_transformer.FOREACH (t, a))
⊦ (∀a.
errorStateMonad.FOREACH ([], a) = errorStateMonad.UNIT Data.Unit.()) ∧
∀t h a.
errorStateMonad.FOREACH (h :: t, a) =
errorStateMonad.BIND (a h) (λu. errorStateMonad.FOREACH (t, a))
⊦ ∀P.
(∀a. P ([], a)) ∧ (∀h t a. P (t, a) ⇒ P (h :: t, a)) ⇒ ∀v v1. P (v, v1)
⊦ ∀P.
(∀a. P ([], a)) ∧ (∀h t a. P (t, a) ⇒ P (h :: t, a)) ⇒ ∀v v1. P (v, v1)
⊦ ∀j i a.
state_transformer.FOR (i, j, a) =
if i = j then a i
else
state_transformer.BIND (a i)
(λu.
state_transformer.FOR
((if i < j then i + 1 else arithmetic.- i 1), j, a))
⊦ ∀j i a.
errorStateMonad.FOR (i, j, a) =
if i = j then a i
else
errorStateMonad.BIND (a i)
(λu.
errorStateMonad.FOR
((if i < j then i + 1 else arithmetic.- i 1), j, a))
⊦ state_transformer.FOREACH =
relation.WFREC (select R. wellFounded R ∧ ∀h a t. R (t, a) (h :: t, a))
(λFOREACH a'.
pair.pair_CASE a'
(λv a.
list.list_CASE v (id (state_transformer.UNIT Data.Unit.()))
(λh t.
id (state_transformer.BIND (a h) (λu. FOREACH (t, a))))))
⊦ errorStateMonad.FOREACH =
relation.WFREC (select R. wellFounded R ∧ ∀h a t. R (t, a) (h :: t, a))
(λFOREACH a'.
pair.pair_CASE a'
(λv a.
list.list_CASE v (id (errorStateMonad.UNIT Data.Unit.()))
(λh t.
id (errorStateMonad.BIND (a h) (λu. FOREACH (t, a))))))
⊦ ∀P.
(∀i j a.
(¬(i = j) ⇒ P ((if i < j then i + 1 else arithmetic.- i 1), j, a)) ⇒
P (i, j, a)) ⇒ ∀v v1 v2. P (v, v1, v2)
⊦ ∀P.
(∀i j a.
(¬(i = j) ⇒ P ((if i < j then i + 1 else arithmetic.- i 1), j, a)) ⇒
P (i, j, a)) ⇒ ∀v v1 v2. P (v, v1, v2)
⊦ state_transformer.FOR =
relation.WFREC
(select R.
wellFounded R ∧
∀a j i.
¬(i = j) ⇒
R ((if i < j then i + 1 else arithmetic.- i 1), j, a) (i, j, a))
(λFOR a'.
pair.pair_CASE a'
(λi v1.
pair.pair_CASE v1
(λj a.
id
(if i = j then a i
else
state_transformer.BIND (a i)
(λu.
FOR
((if i < j then i + 1 else arithmetic.- i 1),
j, a))))))
⊦ errorStateMonad.FOR =
relation.WFREC
(select R.
wellFounded R ∧
∀a j i.
¬(i = j) ⇒
R ((if i < j then i + 1 else arithmetic.- i 1), j, a) (i, j, a))
(λFOR a'.
pair.pair_CASE a'
(λi v1.
pair.pair_CASE v1
(λj a.
id
(if i = j then a i
else
errorStateMonad.BIND (a i)
(λu.
FOR
((if i < j then i + 1 else arithmetic.- i 1),
j, a))))))
External Type Operators
- →
- bool
- Data
- List
- list
- Option
- Data.Option.option
- Pair
- ×
- Unit
- Data.Unit.unit
- List
- Number
- Natural
- natural
- Natural
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- ⊥
- ⊤
- List
- ::
- []
- map
- Option
- Data.Option.none
- Data.Option.some
- Pair
- ,
- fst
- snd
- Unit
- Data.Unit.()
- Bool
- Function
- const
- flip
- id
- ∘
- Combinator
- Combinator.s
- HOL4
- arithmetic
- arithmetic.-
- arithmetic.BIT2
- arithmetic.FUNPOW
- bool
- bool.LET
- list
- list.list_CASE
- list.list_size
- list.FOLDR
- marker
- marker.Abbrev
- numeral
- numeral.iZ
- numeral.iiSUC
- option
- option.option_CASE
- option.OPTION_BIND
- option.OPTION_MCOMP
- pair
- pair.pair_CASE
- pair.CURRY
- pair.UNCURRY
- prim_rec
- prim_rec.measure
- prim_rec.PRE
- relation
- relation.inv_image
- relation.RESTRICT
- relation.WFREC
- while
- while.LEAST
- arithmetic
- Number
- Natural
- *
- +
- <
- ≤
- >
- ≥
- ↑
- bit1
- even
- odd
- suc
- zero
- Natural
- Relation
- wellFounded
Assumptions
⊦ ⊤
⊦ wellFounded (<)
⊦ prim_rec.measure = relation.inv_image (<)
⊦ ∀t. ⊥ ⇒ t
⊦ ∀n. 0 ≤ n
⊦ ∀m. wellFounded (prim_rec.measure m)
⊦ ∀x. id x = x
⊦ ∀t. t ∨ ¬t
⊦ ∀x. marker.Abbrev x ⇔ x
⊦ (¬) = λt. t ⇒ ⊥
⊦ (∃) = λP. P ((select) P)
⊦ ∀a. ∃x. x = a
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (∃x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λP. P = λx. ⊤
⊦ arithmetic.BIT2 0 = suc 1
⊦ arithmetic.FUNPOW f 0 x = x
⊦ ¬(p ⇒ q) ⇒ p
⊦ ∀x. ¬(Data.Option.none = Data.Option.some x)
⊦ ∀x. x = x ⇔ ⊤
⊦ ∀f. pair.CURRY (pair.UNCURRY f) = f
⊦ ∀f. pair.UNCURRY (pair.CURRY f) = f
⊦ ¬(p ⇒ q) ⇒ ¬q
⊦ ∀A. A ⇒ ¬A ⇒ ⊥
⊦ ∀t. ¬t ⇒ t ⇒ ⊥
⊦ ∀x y. const x y = x
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. t ⇒ ⊥ ⇔ t ⇔ ⊥
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀n. suc n = 1 + n
⊦ ∀x. (fst x, snd x) = x
⊦ ∀x y. fst (x, y) = x
⊦ ∀x y. snd (x, y) = y
⊦ ∀f x. bool.LET f x = f x
⊦ ∀P x. P x ⇒ P ((select) P)
⊦ f ∘ (λx. g x) = λx. f (g x)
⊦ flip (λx. f x) y = λx. f x y
⊦ pair.pair_CASE (x, y) f = f x y
⊦ ∀n. arithmetic.BIT2 0 * n = n + n
⊦ ∀x. ∃q r. x = (q, r)
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀m n. m + n = n + m
⊦ ∀R f. wellFounded R ⇒ wellFounded (relation.inv_image R f)
⊦ P (bool.LET f v) = bool.LET (P ∘ f) v
⊦ bool.LET f v x = bool.LET (flip f x) v
⊦ (¬A ⇒ ⊥) ⇒ (A ⇒ ⊥) ⇒ ⊥
⊦ Combinator.s f (λx. g x) = λx. f x (g x)
⊦ ∀f g. f ∘ g = λx. f (g x)
⊦ ∀A B. A ⇒ B ⇔ ¬A ∨ B
⊦ ∀m n. m < n ⇔ suc m ≤ n
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ ∀m. m = 0 ∨ ∃n. m = suc n
⊦ ∀opt. opt = Data.Option.none ∨ ∃x. opt = Data.Option.some x
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ option.OPTION_MCOMP f (option.OPTION_MCOMP g h) =
option.OPTION_MCOMP (option.OPTION_MCOMP f g) h
⊦ option.OPTION_MCOMP g Data.Option.some = g ∧
option.OPTION_MCOMP Data.Option.some f = f
⊦ ∀P. ¬(∃x. P x) ⇔ ∀x. ¬P x
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀x y. Data.Option.some x = Data.Option.some y ⇔ x = y
⊦ ∀A B. ¬(A ⇒ B) ⇔ A ∧ ¬B
⊦ ∀m n. suc m = suc n ⇔ m = n
⊦ ∀m n. suc m < suc n ⇔ m < n
⊦ ∀p f. pair.pair_CASE p f = f (fst p) (snd p)
⊦ ∀f v. pair.UNCURRY f v = f (fst v) (snd v)
⊦ ∀m. arithmetic.- 0 m = 0 ∧ arithmetic.- m 0 = m
⊦ ∀f g x. (f ∘ g) x = f (g x)
⊦ ∀f. id ∘ f = f ∧ f ∘ id = f
⊦ ∀f x y. flip f x y = f y x
⊦ ∀R f. relation.inv_image R f = λx y. R (f x) (f y)
⊦ ∀l. l = [] ∨ ∃h t. l = h :: t
⊦ ∀f g. f = g ⇔ ∀x. f x = g x
⊦ ∀f g. (∀x. f x = g x) ⇒ f = g
⊦ ∀P a. (∃x. x = a ∧ P x) ⇔ P a
⊦ ∀g f m. option.OPTION_MCOMP g f m = option.OPTION_BIND (f m) g
⊦ ∀f x y. pair.UNCURRY f (x, y) = f x y
⊦ ∀f x y. pair.CURRY f x y = f (x, y)
⊦ (∨) = λt1 t2. ∀t. (t1 ⇒ t) ⇒ (t2 ⇒ t) ⇒ t
⊦ ∀t1 t2. (t1 ⇒ t2) ⇒ (t2 ⇒ t1) ⇒ (t1 ⇔ t2)
⊦ ∀m n. m = n ⇔ m ≤ n ∧ n ≤ m
⊦ bool.LET f v ⇔ (∀) (Combinator.s ((⇒) ∘ (marker.Abbrev ∘ flip (=) v)) f)
⊦ (p ⇔ ¬q) ⇔ (p ∨ q) ∧ (¬q ∨ ¬p)
⊦ ¬(¬A ∨ B) ⇒ ⊥ ⇔ A ⇒ ¬B ⇒ ⊥
⊦ ¬(A ∨ B) ⇒ ⊥ ⇔ (A ⇒ ⊥) ⇒ ¬B ⇒ ⊥
⊦ ∀t1 t2 t3. t1 ∧ t2 ∧ t3 ⇔ (t1 ∧ t2) ∧ t3
⊦ ∀t1 t2 t3. t1 ⇒ t2 ⇒ t3 ⇔ t1 ∧ t2 ⇒ t3
⊦ ∀A B C. A ∨ B ∨ C ⇔ (A ∨ B) ∨ C
⊦ ∀m n p. m < arithmetic.- n p ⇔ m + p < n
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m + (n + p) = m + n + p
⊦ ∀m n p. arithmetic.- (arithmetic.- m n) p = arithmetic.- m (n + p)
⊦ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀f g h. f ∘ (g ∘ h) = f ∘ g ∘ h
⊦ ∀P. (∀x. ∃y. P x y) ⇔ ∃f. ∀x. P x (f x)
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1 ∧ (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (t1 ⇔ t2) ⇔ t1 ∧ t2 ∨ ¬t1 ∧ ¬t2
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬⊤ ⇔ ⊥) ∧ (¬⊥ ⇔ ⊤)
⊦ ∀m n. ¬(m = n) ⇔ suc m ≤ n ∨ suc n ≤ m
⊦ ∀m n p. m ≤ n ⇔ suc p * m ≤ suc p * n
⊦ ∀m n p. p * (m + n) = p * m + p * n
⊦ ∀m n p. (m + n) * p = m * p + n * p
⊦ (∀f. option.OPTION_BIND Data.Option.none f = Data.Option.none) ∧
∀x f. option.OPTION_BIND (Data.Option.some x) f = f x
⊦ ∀b f g x. (if b then f else g) x = if b then f x else g x
⊦ ∀f b x y. f (if b then x else y) = if b then f x else f y
⊦ ∀f R y z. R y z ⇒ relation.RESTRICT f R z y = f y
⊦ (∀t1 t2. (if ⊤ then t1 else t2) = t1) ∧
∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀m n p. arithmetic.- m n < p ⇔ m < n + p ∧ 0 < p
⊦ ∀x y a b. (x, y) = (a, b) ⇔ x = a ∧ y = b
⊦ (p ⇔ q ⇒ r) ⇔ (p ∨ q) ∧ (p ∨ ¬r) ∧ (¬q ∨ r ∨ ¬p)
⊦ (p ⇔ q ∨ r) ⇔ (p ∨ ¬q) ∧ (p ∨ ¬r) ∧ (q ∨ r ∨ ¬p)
⊦ ∀R. wellFounded R ⇒ ∀P. (∀x. (∀y. R y x ⇒ P y) ⇒ P x) ⇒ ∀x. P x
⊦ (∀v f. option.option_CASE Data.Option.none v f = v) ∧
∀x v f. option.option_CASE (Data.Option.some x) v f = f x
⊦ ∀x x' y y'. (x ⇔ x') ∧ (x' ⇒ (y ⇔ y')) ⇒ (x ⇒ y ⇔ x' ⇒ y')
⊦ (p ⇔ q ∧ r) ⇔ (p ∨ ¬q ∨ ¬r) ∧ (q ∨ ¬p) ∧ (r ∨ ¬p)
⊦ suc 0 = 1 ∧ (∀n. suc (bit1 n) = arithmetic.BIT2 n) ∧
∀n. suc (arithmetic.BIT2 n) = bit1 (suc n)
⊦ P (arithmetic.- a b) ⇔ ∀d. (b = a + d ⇒ P 0) ∧ (a = b + d ⇒ P d)
⊦ ∀A B. (¬(A ∧ B) ⇔ ¬A ∨ ¬B) ∧ (¬(A ∨ B) ⇔ ¬A ∧ ¬B)
⊦ ∀M R f.
f = relation.WFREC R M ⇒ wellFounded R ⇒
∀x. f x = M (relation.RESTRICT f R x) x
⊦ (∀f. map f [] = []) ∧ ∀f h t. map f (h :: t) = f h :: map f t
⊦ ∀P P' Q Q'. (Q ⇒ (P ⇔ P')) ∧ (P' ⇒ (Q ⇔ Q')) ⇒ (P ∧ Q ⇔ P' ∧ Q')
⊦ (∀f x. arithmetic.FUNPOW f 0 x = x) ∧
∀f n x. arithmetic.FUNPOW f (suc n) x = arithmetic.FUNPOW f n (f x)
⊦ (∀v f. list.list_CASE [] v f = v) ∧
∀a0 a1 v f. list.list_CASE (a0 :: a1) v f = f a0 a1
⊦ ∀t. ((⊤ ⇔ t) ⇔ t) ∧ ((t ⇔ ⊤) ⇔ t) ∧ ((⊥ ⇔ t) ⇔ ¬t) ∧ ((t ⇔ ⊥) ⇔ ¬t)
⊦ (∀f. list.list_size f [] = 0) ∧
∀f a0 a1. list.list_size f (a0 :: a1) = 1 + (f a0 + list.list_size f a1)
⊦ ∀Q P.
(∃n. P n) ∧ (∀n. (∀m. m < n ⇒ ¬P m) ∧ P n ⇒ Q n) ⇒ Q (while.LEAST P)
⊦ (∀f e. list.FOLDR f e [] = e) ∧
∀f e x l. list.FOLDR f e (x :: l) = f x (list.FOLDR f e l)
⊦ ∀t. (⊤ ∧ t ⇔ t) ∧ (t ∧ ⊤ ⇔ t) ∧ (⊥ ∧ t ⇔ ⊥) ∧ (t ∧ ⊥ ⇔ ⊥) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (⊤ ∨ t ⇔ ⊤) ∧ (t ∨ ⊤ ⇔ ⊤) ∧ (⊥ ∨ t ⇔ t) ∧ (t ∨ ⊥ ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ 0 + m = m ∧ m + 0 = m ∧ suc m + n = suc (m + n) ∧ m + suc n = suc (m + n)
⊦ ∀t. (⊤ ⇒ t ⇔ t) ∧ (t ⇒ ⊤ ⇔ ⊤) ∧ (⊥ ⇒ t ⇔ ⊤) ∧ (t ⇒ t ⇔ ⊤) ∧ (t ⇒ ⊥ ⇔ ¬t)
⊦ ∀P Q x x' y y'.
(P ⇔ Q) ∧ (Q ⇒ x = x') ∧ (¬Q ⇒ y = y') ⇒
(if P then x else y) = if Q then x' else y'
⊦ (p ⇔ q ⇔ r) ⇔ (p ∨ q ∨ r) ∧ (p ∨ ¬r ∨ ¬q) ∧ (q ∨ ¬r ∨ ¬p) ∧ (r ∨ ¬q ∨ ¬p)
⊦ ∀m n.
0 * m = 0 ∧ m * 0 = 0 ∧ 1 * m = m ∧ m * 1 = m ∧ suc m * n = m * n + n ∧
m * suc n = m + m * n
⊦ ∀n m.
(0 ≤ n ⇔ ⊤) ∧ (bit1 n ≤ 0 ⇔ ⊥) ∧ (arithmetic.BIT2 n ≤ 0 ⇔ ⊥) ∧
(bit1 n ≤ bit1 m ⇔ n ≤ m) ∧ (bit1 n ≤ arithmetic.BIT2 m ⇔ n ≤ m) ∧
(arithmetic.BIT2 n ≤ bit1 m ⇔ ¬(m ≤ n)) ∧
(arithmetic.BIT2 n ≤ arithmetic.BIT2 m ⇔ n ≤ m)
⊦ ∀n m.
(0 < bit1 n ⇔ ⊤) ∧ (0 < arithmetic.BIT2 n ⇔ ⊤) ∧ (n < 0 ⇔ ⊥) ∧
(bit1 n < bit1 m ⇔ n < m) ∧
(arithmetic.BIT2 n < arithmetic.BIT2 m ⇔ n < m) ∧
(bit1 n < arithmetic.BIT2 m ⇔ ¬(m < n)) ∧
(arithmetic.BIT2 n < bit1 m ⇔ n < m)
⊦ ∀n m.
numeral.iZ (0 + n) = n ∧ numeral.iZ (n + 0) = n ∧
numeral.iZ (bit1 n + bit1 m) = arithmetic.BIT2 (numeral.iZ (n + m)) ∧
numeral.iZ (bit1 n + arithmetic.BIT2 m) = bit1 (suc (n + m)) ∧
numeral.iZ (arithmetic.BIT2 n + bit1 m) = bit1 (suc (n + m)) ∧
numeral.iZ (arithmetic.BIT2 n + arithmetic.BIT2 m) =
arithmetic.BIT2 (suc (n + m)) ∧ suc (0 + n) = suc n ∧
suc (n + 0) = suc n ∧ suc (bit1 n + bit1 m) = bit1 (suc (n + m)) ∧
suc (bit1 n + arithmetic.BIT2 m) = arithmetic.BIT2 (suc (n + m)) ∧
suc (arithmetic.BIT2 n + bit1 m) = arithmetic.BIT2 (suc (n + m)) ∧
suc (arithmetic.BIT2 n + arithmetic.BIT2 m) =
bit1 (numeral.iiSUC (n + m)) ∧
numeral.iiSUC (0 + n) = numeral.iiSUC n ∧
numeral.iiSUC (n + 0) = numeral.iiSUC n ∧
numeral.iiSUC (bit1 n + bit1 m) = arithmetic.BIT2 (suc (n + m)) ∧
numeral.iiSUC (bit1 n + arithmetic.BIT2 m) =
bit1 (numeral.iiSUC (n + m)) ∧
numeral.iiSUC (arithmetic.BIT2 n + bit1 m) =
bit1 (numeral.iiSUC (n + m)) ∧
numeral.iiSUC (arithmetic.BIT2 n + arithmetic.BIT2 m) =
arithmetic.BIT2 (numeral.iiSUC (n + m))
⊦ (∀n. 0 + n = n) ∧ (∀n. n + 0 = n) ∧ (∀n m. n + m = numeral.iZ (n + m)) ∧
(∀n. 0 * n = 0) ∧ (∀n. n * 0 = 0) ∧ (∀n m. n * m = n * m) ∧
(∀n. arithmetic.- 0 n = 0) ∧ (∀n. arithmetic.- n 0 = n) ∧
(∀n m. arithmetic.- n m = arithmetic.- n m) ∧ (∀n. 0 ↑ bit1 n = 0) ∧
(∀n. 0 ↑ arithmetic.BIT2 n = 0) ∧ (∀n. n ↑ 0 = 1) ∧
(∀n m. n ↑ m = n ↑ m) ∧ suc 0 = 1 ∧ (∀n. suc n = suc n) ∧
prim_rec.PRE 0 = 0 ∧ (∀n. prim_rec.PRE n = prim_rec.PRE n) ∧
(∀n. n = 0 ⇔ n = 0) ∧ (∀n. 0 = n ⇔ n = 0) ∧ (∀n m. n = m ⇔ n = m) ∧
(∀n. n < 0 ⇔ ⊥) ∧ (∀n. 0 < n ⇔ 0 < n) ∧ (∀n m. n < m ⇔ n < m) ∧
(∀n. 0 > n ⇔ ⊥) ∧ (∀n. n > 0 ⇔ 0 < n) ∧ (∀n m. n > m ⇔ m < n) ∧
(∀n. 0 ≤ n ⇔ ⊤) ∧ (∀n. n ≤ 0 ⇔ n ≤ 0) ∧ (∀n m. n ≤ m ⇔ n ≤ m) ∧
(∀n. n ≥ 0 ⇔ ⊤) ∧ (∀n. 0 ≥ n ⇔ n = 0) ∧ (∀n m. n ≥ m ⇔ m ≤ n) ∧
(∀n. odd n ⇔ odd n) ∧ (∀n. even n ⇔ even n) ∧ ¬odd 0 ∧ even 0