Package hol-res-quan: HOL theory about restricted quantifiers
Information
name | hol-res-quan |
version | 1.1 |
description | HOL theory about restricted quantifiers |
author | HOL OpenTheory Packager <opentheory-packager@hol-theorem-prover.org> |
license | MIT |
checksum | f09012313c4018fc861516cbd78a9a7f46157ff7 |
requires | base hol-base |
show | Data.Bool Function HOL4 |
Files
- Package tarball hol-res-quan-1.1.tgz
- Theory source file hol-res-quan.thy (included in the package tarball)
Theorems
⊦ ∀p. bool.RES_FORALL pred_set.EMPTY p
⊦ ∀p. ¬bool.RES_EXISTS pred_set.EMPTY p
⊦ ∀p. ¬bool.RES_EXISTS_UNIQUE pred_set.EMPTY p
⊦ ∀p. bool.RES_SELECT pred_set.UNIV p = (select) p
⊦ ∀p. bool.RES_EXISTS pred_set.UNIV p ⇔ (∃) p
⊦ ∀p. bool.RES_EXISTS_UNIQUE pred_set.UNIV p ⇔ (∃!) p
⊦ ∀p. bool.RES_FORALL pred_set.UNIV p ⇔ (∀) p
⊦ ∀p. bool.RES_SELECT pred_set.EMPTY p = select x. ⊥
⊦ ∀P j. bool.RES_EXISTS ((=) j) (λx. P x) ⇔ P j
⊦ ∀P j. bool.RES_FORALL ((=) j) (λx. P x) ⇔ P j
⊦ ∀p m. bool.RES_ABSTRACT p (bool.RES_ABSTRACT p m) = bool.RES_ABSTRACT p m
⊦ ∀p m. bool.RES_FORALL p (λx. m) ⇔ p = pred_set.EMPTY ∨ m
⊦ ∀p m. bool.RES_EXISTS p (λx. m) ⇔ ¬(p = pred_set.EMPTY) ∧ m
⊦ ∀P f. bool.RES_SELECT P f = select x. bool.IN x P ∧ f x
⊦ ∀P f. bool.RES_EXISTS P f ⇔ ∃x. bool.IN x P ∧ f x
⊦ ∀P f. bool.RES_FORALL P f ⇔ ∀x. bool.IN x P ⇒ f x
⊦ ∀p m x. bool.IN x p ⇒ bool.RES_ABSTRACT p m x = m x
⊦ ∀p m.
bool.RES_EXISTS_UNIQUE p (λx. m) ⇔
(∃x. p = pred_set.INSERT x pred_set.EMPTY) ∧ m
⊦ ∀p m.
bool.RES_EXISTS p m ⇔
bool.IN (bool.RES_SELECT p m) p ∧ m (bool.RES_SELECT p m)
⊦ ∀P R x.
(∀x. bool.RES_FORALL P (λi. R i x)) ⇔ bool.RES_FORALL P (λi. ∀x. R i x)
⊦ ∀p m.
bool.RES_EXISTS_UNIQUE p m ⇔
bool.RES_EXISTS p (λx. m x ∧ bool.RES_FORALL p (λy. m y ⇒ y = x))
⊦ ∀P Q R.
bool.RES_EXISTS P (λi. bool.RES_EXISTS Q (λx. R i x)) ⇔
bool.RES_EXISTS Q (λj. bool.RES_EXISTS P (λi. R i j))
⊦ ∀P Q R.
bool.RES_FORALL P (λi. bool.RES_FORALL Q (λx. R i x)) ⇔
bool.RES_FORALL Q (λx. bool.RES_FORALL P (λi. R i x))
⊦ ∀p m1 m2.
bool.RES_ABSTRACT p m1 = bool.RES_ABSTRACT p m2 ⇔
∀x. bool.IN x p ⇒ m1 x = m2 x
⊦ ∀p m1 m2.
(∀x. bool.IN x p ⇒ m1 x = m2 x) ⇒
bool.RES_ABSTRACT p m1 = bool.RES_ABSTRACT p m2
⊦ ∀P Q R.
bool.RES_EXISTS P (λi. Q i ∨ R i) ⇔
bool.RES_EXISTS P (λx. Q x) ∨ bool.RES_EXISTS P (λi. R i)
⊦ ∀P Q R.
bool.RES_FORALL P (λi. Q i ∧ R i) ⇔
bool.RES_FORALL P (λx. Q x) ∧ bool.RES_FORALL P (λi. R i)
⊦ ∀P Q R.
bool.RES_EXISTS (λj. P j ∨ Q j) (λi. R i) ⇔
bool.RES_EXISTS P (λi. R i) ∨ bool.RES_EXISTS Q (λi. R i)
⊦ ∀P Q R.
bool.RES_FORALL (λj. P j ∨ Q j) (λi. R i) ⇔
bool.RES_FORALL P (λi. R i) ∧ bool.RES_FORALL Q (λi. R i)
⊦ ∀P f.
bool.RES_EXISTS_UNIQUE P f ⇔
bool.RES_EXISTS P (λx. f x) ∧
bool.RES_FORALL P (λx. bool.RES_FORALL P (λy. f x ∧ f y ⇒ x = y))
External Type Operators
- →
- bool
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ∨
- ¬
- ⊥
- ⊤
- Bool
- Function
- id
- HOL4
- bool
- bool.IN
- bool.RES_ABSTRACT
- bool.RES_EXISTS
- bool.RES_EXISTS_UNIQUE
- bool.RES_FORALL
- bool.RES_SELECT
- pred_set
- pred_set.EMPTY
- pred_set.INSERT
- pred_set.UNIV
- bool
Assumptions
⊦ ⊤
⊦ ∀x. bool.IN x pred_set.UNIV
⊦ ∀t. ⊥ ⇒ t
⊦ ¬¬p ⇒ p
⊦ ∀x. ¬bool.IN x pred_set.EMPTY
⊦ ∀x. id x = x
⊦ (¬) = λt. t ⇒ ⊥
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (∃x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λP. P = λx. ⊤
⊦ ¬(p ⇒ q) ⇒ p
⊦ ∀x. x = x ⇔ ⊤
⊦ ∀t. ¬¬t ⇔ t
⊦ ¬(p ⇒ q) ⇒ ¬q
⊦ ¬(p ∨ q) ⇒ ¬p
⊦ ¬(p ∨ q) ⇒ ¬q
⊦ ∀A. A ⇒ ¬A ⇒ ⊥
⊦ ∀t. ¬t ⇒ t ⇒ ⊥
⊦ ∀t. (t ⇒ ⊥) ⇒ ¬t
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀P x. bool.IN x P ⇔ P x
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀t1 t2. t1 ∧ t2 ⇔ t2 ∧ t1
⊦ ∀A B. A ∨ B ⇔ B ∨ A
⊦ (¬A ⇒ ⊥) ⇒ (A ⇒ ⊥) ⇒ ⊥
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀P. ¬(∀x. P x) ⇔ ∃x. ¬P x
⊦ ∀P. ¬(∃x. P x) ⇔ ∀x. ¬P x
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀x y. bool.IN x (pred_set.INSERT y pred_set.EMPTY) ⇔ x = y
⊦ (∨) = λt1 t2. ∀t. (t1 ⇒ t) ⇒ (t2 ⇒ t) ⇒ t
⊦ ∀t1 t2. (t1 ⇒ t2) ⇒ (t2 ⇒ t1) ⇒ (t1 ⇔ t2)
⊦ (p ⇔ ¬q) ⇔ (p ∨ q) ∧ (¬q ∨ ¬p)
⊦ ¬(¬A ∨ B) ⇒ ⊥ ⇔ A ⇒ ¬B ⇒ ⊥
⊦ ∀P f. bool.RES_SELECT P f = select x. bool.IN x P ∧ f x
⊦ ∀P f. bool.RES_EXISTS P f ⇔ ∃x. bool.IN x P ∧ f x
⊦ ∀P f. bool.RES_FORALL P f ⇔ ∀x. bool.IN x P ⇒ f x
⊦ ∀P Q. (∀x. P ∨ Q x) ⇔ P ∨ ∀x. Q x
⊦ ∀P Q. (∃x. P ∧ Q x) ⇔ P ∧ ∃x. Q x
⊦ ∀P Q. P ∨ (∃x. Q x) ⇔ ∃x. P ∨ Q x
⊦ ∀P Q. (∃x. P x ∧ Q) ⇔ (∃x. P x) ∧ Q
⊦ ∀P Q. (∃x. P x) ∨ Q ⇔ ∃x. P x ∨ Q
⊦ ¬(A ∨ B) ⇒ ⊥ ⇔ (A ⇒ ⊥) ⇒ ¬B ⇒ ⊥
⊦ ∀t1 t2 t3. t1 ⇒ t2 ⇒ t3 ⇔ t1 ∧ t2 ⇒ t3
⊦ ∀A B C. A ∨ B ∨ C ⇔ (A ∨ B) ∨ C
⊦ ∀s t. s = t ⇔ ∀x. bool.IN x s ⇔ bool.IN x t
⊦ ∀P. (∀x. ∃y. P x y) ⇔ ∃f. ∀x. P x (f x)
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬⊤ ⇔ ⊥) ∧ (¬⊥ ⇔ ⊤)
⊦ ∀A B C. (B ∨ C) ∧ A ⇔ B ∧ A ∨ C ∧ A
⊦ (∃!) = λP. (∃) P ∧ ∀x y. P x ∧ P y ⇒ x = y
⊦ ∀P Q. (∃j. P j ∨ Q j) ⇔ (∃x. P x) ∨ ∃x. Q x
⊦ (p ⇔ q ⇒ r) ⇔ (p ∨ q) ∧ (p ∨ ¬r) ∧ (¬q ∨ r ∨ ¬p)
⊦ (p ⇔ q ∨ r) ⇔ (p ∨ ¬q) ∧ (p ∨ ¬r) ∧ (q ∨ r ∨ ¬p)
⊦ P = Q ⇒ (∀x. bool.IN x Q ⇒ (f x ⇔ g x)) ⇒
(bool.RES_FORALL P f ⇔ bool.RES_FORALL Q g)
⊦ ∀x x' y y'. (x ⇔ x') ∧ (x' ⇒ (y ⇔ y')) ⇒ (x ⇒ y ⇔ x' ⇒ y')
⊦ (p ⇔ q ∧ r) ⇔ (p ∨ ¬q ∨ ¬r) ∧ (q ∨ ¬p) ∧ (r ∨ ¬p)
⊦ ∀A B. (¬(A ∧ B) ⇔ ¬A ∨ ¬B) ∧ (¬(A ∨ B) ⇔ ¬A ∧ ¬B)
⊦ ∀t. ((⊤ ⇔ t) ⇔ t) ∧ ((t ⇔ ⊤) ⇔ t) ∧ ((⊥ ⇔ t) ⇔ ¬t) ∧ ((t ⇔ ⊥) ⇔ ¬t)
⊦ ∀P f.
bool.RES_EXISTS_UNIQUE P f ⇔
bool.RES_EXISTS P (λx. f x) ∧
bool.RES_FORALL P (λx. bool.RES_FORALL P (λy. f x ∧ f y ⇒ x = y))
⊦ ∀t. (⊤ ∧ t ⇔ t) ∧ (t ∧ ⊤ ⇔ t) ∧ (⊥ ∧ t ⇔ ⊥) ∧ (t ∧ ⊥ ⇔ ⊥) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (⊤ ∨ t ⇔ ⊤) ∧ (t ∨ ⊤ ⇔ ⊤) ∧ (⊥ ∨ t ⇔ t) ∧ (t ∨ ⊥ ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀t. (⊤ ⇒ t ⇔ t) ∧ (t ⇒ ⊤ ⇔ ⊤) ∧ (⊥ ⇒ t ⇔ ⊤) ∧ (t ⇒ t ⇔ ⊤) ∧ (t ⇒ ⊥ ⇔ ¬t)
⊦ (p ⇔ q ⇔ r) ⇔ (p ∨ q ∨ r) ∧ (p ∨ ¬r ∨ ¬q) ∧ (q ∨ ¬r ∨ ¬p) ∧ (r ∨ ¬q ∨ ¬p)
⊦ (∀p m x. bool.IN x p ⇒ bool.RES_ABSTRACT p m x = m x) ∧
∀p m1 m2.
(∀x. bool.IN x p ⇒ m1 x = m2 x) ⇒
bool.RES_ABSTRACT p m1 = bool.RES_ABSTRACT p m2