Package list: List types

Information

namelist
version1.40
descriptionList types
authorJoe Hurd <joe@gilith.com>
licenseMIT
requiresbool
function
pair
natural
set
showData.Bool
Data.List
Data.Pair
Function
Number.Natural
Set

Files

Defined Type Operator

Defined Constants

Theorems

null []

length [] = 0

concat [] = []

nubReverse [] = []

reverse [] = []

toSet [] =

map id = id

l. finite (toSet l)

p. all p []

l. all (λx. T) l

x. ¬member x []

p. ¬exists p []

x. replicate 0 x = []

m. interval m 0 = []

l. reverse (reverse l) = l

l. [] @ l = l

l. l @ [] = l

l. drop 0 l = l

l. take 0 l = []

f. map f [] = []

P. filter P [] = []

l. map (λx. x) l = l

h. last (h :: []) = h

l. null l l = []

l. length (reverse l) = length l

l. nub (nub l) = nub l

l. nubReverse (nubReverse l) = nubReverse l

l. toSet (nub l) = toSet l

l. toSet (nubReverse l) = toSet l

l. toSet (reverse l) = toSet l

l. length (nub l) length l

l. length (nubReverse l) length l

l. size (toSet l) length l

l. drop (length l) l = []

l. take (length l) l = l

l. case [] (::) l = l

f. zipWith f [] [] = []

h t. ¬null (h :: t)

l. nub l = reverse (nubReverse (reverse l))

l. null (concat l) all null l

h t. ¬(h :: t = [])

h t. head (h :: t) = h

h t. tail (h :: t) = t

b f. case b f [] = b

n x. length (replicate n x) = n

m n. length (interval m n) = n

l. length l = 0 l = []

l. toSet l = l = []

s. finite s toSet (fromSet s) = s

h t. nth 0 (h :: t) = h

l f. length (map f l) = length l

p l. length (filter p l) length l

p l. toSet (filter p l) toSet l

s. finite s length (fromSet s) = size s

x l. member x l x toSet l

h t. length (h :: t) = suc (length t)

l x. member x (nub l) member x l

l x. member x (nubReverse l) member x l

l x. member x (reverse l) member x l

l. ¬(l = []) last l toSet l

h t. toSet (h :: t) = insert h (toSet t)

h t. concat (h :: t) = h @ concat t

f l. toSet (map f l) = image f (toSet l)

f l. map f l = [] l = []

x n. replicate (suc n) x = x :: replicate n x

l n. n < length l member (nth n l) l

l m. null (l @ m) null l null m

l m. length (l @ m) = length l + length m

l m. reverse (l @ m) = reverse m @ reverse l

l1 l2. toSet (l1 @ l2) = toSet l1 toSet l2

l. l = [] h t. l = h :: t

l. ¬(l = []) head l :: tail l = l

P l. ¬all P l exists (λx. ¬P x) l

P l. ¬exists P l all (λx. ¬P x) l

x l. reverse (x :: l) = reverse l @ x :: []

m n. interval m (suc n) = m :: interval (suc m) n

n l. n length l length (take n l) = n

l i. i < length l nth i l toSet l

s. finite s x. member x (fromSet s) x s

P l. (x. member x l P x) all P l

P l. (x. P x member x l) exists P l

h t. last (h :: t) = if t = [] then h else last t

h k t. last (h :: k :: t) = last (k :: t)

n x i. i < n nth i (replicate n x) = x

l h t. (h :: t) @ l = h :: t @ l

l m n. l @ m @ n = (l @ m) @ n

l. ¬(l = []) length (tail l) = length l - 1

f g l. map (g f) l = map g (map f l)

P l. all P l x. x toSet l P x

P l. exists P l x. x toSet l P x

P f l. all P (map f l) all (P f) l

P f l. exists P (map f l) exists (P f) l

b f h t. case b f (h :: t) = f h t

n x. toSet (replicate n x) = if n = 0 then else insert x

l m. head (l @ m) = if l = [] then head m else head l

p q. last (p @ q) = if q = [] then last p else last q

l m. l @ m = [] l = [] m = []

l. ¬(l = []) last l = nth (length l - 1) l

s. finite s toSet (fromSet s) = s length (fromSet s) = size s

f h t. map f (h :: t) = f h :: map f t

p h t. all p (h :: t) p h all p t

p h t. exists p (h :: t) p h exists p t

P l x. member x (filter P l) P x member x l

P l. (x. all (P x) l) all (λs. x. P x s) l

P l. (x. exists (P x) l) exists (λs. x. P x s) l

n l. n length l length (drop n l) = length l - n

n l. n length l take n l @ drop n l = l

x h t. member x (h :: t) x = h member x t

x l1 l2. member x (l1 @ l2) member x l1 member x l2

m n i. i < n nth i (interval m n) = m + i

f l1 l2. map f (l1 @ l2) = map f l1 @ map f l2

f. (m. l. map f l = m) y. x. f x = y

P l1 l2. all P (l1 @ l2) all P l1 all P l2

P l1 l2. filter P (l1 @ l2) = filter P l1 @ filter P l2

P l. all P l i. i < length l P (nth i l)

P l. exists P l i. i < length l P (nth i l)

P f l. filter P (map f l) = map f (filter (P f) l)

h t.
    nubReverse (h :: t) =
    if member h t then nubReverse t else h :: nubReverse t

l x. member x l i. i < length l x = nth i l

P Q l. (x. P x Q x) all P l all Q l

P. P [] (a0 a1. P a1 P (a0 :: a1)) x. P x

h t n. n < length t nth (suc n) (h :: t) = nth n t

x l. x toSet l i. i < length l x = nth i l

n h t. n length t drop (suc n) (h :: t) = drop n t

f l i. i < length l nth i (map f l) = f (nth i l)

f y l. member y (map f l) x. member x l y = f x

f g l. all (λx. f x = g x) l map f l = map g l

P Q l. all P l all Q l all (λx. P x Q x) l

P Q l. all (λx. P x Q x) l all P l all Q l

h1 h2 t1 t2. h1 :: t1 = h2 :: t2 h1 = h2 t1 = t2

n h t. n length t take (suc n) (h :: t) = h :: take n t

P h t. filter P (h :: t) = if P h then h :: filter P t else filter P t

l n. length l = suc n h t. l = h :: t length t = n

NIL' CONS'.
    fn. fn [] = NIL' a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)

n l i. n + i < length l nth i (drop n l) = nth (n + i) l

n l i. n length l i < n nth i (take n l) = nth i l

P Q l. (x. member x l P x Q x) all P l all Q l

P Q l. (x. member x l P x Q x) exists P l exists Q l

f l1 l2 n. length l1 = n length l2 = n length (zipWith f l1 l2) = n

l m.
    length l = length m (i. i < length l nth i l = nth i m) l = m

f. (l m. map f l = map f m l = m) x y. f x = f y x = y

f h1 h2 t1 t2.
    length t1 = length t2
    zipWith f (h1 :: t1) (h2 :: t2) = f h1 h2 :: zipWith f t1 t2

k l m.
    k < length l + length m
    nth k (l @ m) = if k < length l then nth k l else nth (k - length l) m

Input Type Operators

Input Constants

Assumptions

T

finite

id = λx. x

¬F T

¬T F

bit0 0 = 0

size = 0

t. t t

n. 0 n

n. n n

s. s s

F p. p

x. ¬(x )

x. id x = x

t. t ¬t

n. ¬(n < n)

n. 0 < suc n

n. n < suc n

n. n suc n

(¬) = λp. p F

() = λP. P ((select) P)

a. x. x = a

a. ∃!x. x = a

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx. T

t. ¬¬t t

t. (T t) t

t. (t T) t

t. F t F

t. T t t

t. t F F

t. t T t

t. t t t

t. F t T

t. T t t

t. t T T

t. F t t

t. T t T

t. t F t

t. t T T

n. ¬(suc n = 0)

m. m < 0 F

n. 0 + n = n

m. m + 0 = m

m. m - 0 = m

n. n - n = 0

f. image f =

t. (F t) ¬t

t. (t F) ¬t

t. t F ¬t

n. even (2 * n)

n. bit1 n = suc (bit0 n)

m. exp m 0 = 1

m n. m m + n

() = λp q. p q p

t. (t T) (t F)

n. even (suc n) ¬even n

m. m 0 m = 0

n. suc n - 1 = n

t1 t2. (if F then t1 else t2) = t2

t1 t2. (if T then t1 else t2) = t1

x s. ¬(insert x s = )

n. bit0 (suc n) = suc (suc (bit0 n))

f y. (let x y in f x) = f y

x y. x = y y = x

x y. x = y y = x

t1 t2. t1 t2 t2 t1

t1 t2. t1 t2 t2 t1

m n. m + n - m = n

s x. finite (insert x s) finite s

s t. s t = t s

n. 2 * n = n + n

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. ¬(m < n) n m

m n. suc m n m < n

m. m = 0 n. m = suc n

() = λp q. (λf. f p q) = λf. f T T

P. ¬(x. P x) x. ¬P x

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

x s. insert x (insert x s) = insert x s

x s. insert x s = insert x s

m n. m + suc n = suc (m + n)

m n. suc m + n = suc (m + n)

m n. suc m = suc n m = n

m n. suc m < suc n m < n

m n. suc m suc n m n

f g x. (f g) x = f (g x)

t1 t2. ¬(t1 t2) ¬t1 ¬t2

t1 t2. ¬(t1 t2) ¬t1 ¬t2

m n. even (m * n) even m even n

m n. even (m + n) even m even n

m n. exp m (suc n) = m * exp m n

f g. (x. f x = g x) f = g

P a. (x. a = x P x) P a

() = λp q. r. (p r) (q r) r

m n. m n m < n m = n

m n. m n n m m = n

(s. s = s) s. s = s

P. (x y. P x y) y x. P x y

P Q. (x. P Q x) P x. Q x

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

P Q. (x. P x Q) (x. P x) Q

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

t1 t2 t3. (t1 t2) t3 t1 t2 t3

t1 t2 t3. (t1 t2) t3 t1 t2 t3

m n p. m * (n * p) = m * n * p

m n p. m + p = n + p m = n

m n p. m < n n p m < p

m n p. m n n p m p

s t u. s t u = s (t u)

s t u. s t t u s u

s t. (x. x s x t) s = t

P x. (y. P y y = x) (select) P = x

P. (x. y. P x y) y. x. P x (y x)

m n. n m suc m - suc n = m - n

m n. m suc n m = suc n m n

m n. m * n = 0 m = 0 n = 0

f x s. image f (insert x s) = insert (f x) (image f s)

P. P 0 (n. P n P (suc n)) n. P n

m n. exp m n = 0 m = 0 ¬(n = 0)

(s t. s s t) s t. s t s

x y s. x insert y s x = y x s

s t u. s t u s u t u

(∃!) = λP. () P x y. P x P y x = y

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x) (x. Q x) x. P x Q x

P Q. (x. P x) (x. Q x) x. P x Q x

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

m n p. m * n = m * p m = 0 n = p

m n p. m * n m * p m = 0 n p

x s.
    finite s size (insert x s) = if x s then size s else suc (size s)

m n p. m * n < m * p ¬(m = 0) n < p

x y a b. (x, y) = (a, b) x = a y = b

A B C D. (A B) (C D) A C B D

A B C D. (A B) (C D) A C B D

P. (x. ∃!y. P x y) f. x y. P x y f x = y

P c x y. P (if c then x else y) (c P x) (¬c P y)

P. (∃!x. P x) (x. P x) x x'. P x P x' x = x'

P.
    P (x s. P s ¬(x s) finite s P (insert x s))
    s. finite s P s