Package list-append: Definitions and theorems about the list append function

Information

namelist-append
version1.0
description Definitions and theorems about the list append function
authorJoe Hurd <joe@gilith.com>
licenseMIT
showData.Bool
Data.List

Files

Defined Constant

Theorems

l. l @ [] = l

l m. null (l @ m) null l null m

l m n. l @ m @ n = (l @ m) @ n

l m. l @ m = [] l = [] m = []

l m. head (l @ m) = (if l = [] then head m else head l)

(l. [] @ l = l) h t l. (h :: t) @ l = h :: t @ l

Input Type Operators

Input Constants

Assumptions

T

F p. p

(¬) = λp. p F

() = λP. P ((select) P)

t. (x. t) t

() = λP. P = λx. T

x. x = x T

l. null l l = []

() = λp q. p q p

h t. ¬(h :: t = [])

t h. head (h :: t) = h

(¬T F) (¬F T)

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

P. P [] (a0 a1. P a1 P (a0 :: a1)) x. P x

NIL' CONS'.
    fn. fn [] = NIL' a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)