Package list-append: Definitions and theorems about the list append function

Information

namelist-append
version1.11
description Definitions and theorems about the list append function
authorJoe Hurd <joe@gilith.com>
licenseMIT
showData.Bool
Data.List

Files

Defined Constant

Theorems

l. l @ [] = l

l m. null (l @ m) null l null m

l m. length (l @ m) = Number.Natural.+ (length l) (length m)

l1 l2. toSet (l1 @ l2) = Set.∪ (toSet l1) (toSet l2)

l m n. l @ m @ n = (l @ m) @ n

l m. head (l @ m) = if l = [] then head m else head l

l m. l @ m = [] l = [] m = []

(l. [] @ l = l) l h t. (h :: t) @ l = h :: t @ l

Input Type Operators

Input Constants

Assumptions

T

F p. p

(~) = λp. p F

() = λP. P ((select) P)

t. (x. t) t

() = λp. p = λx. T

x. x = x T

l. null l l = []

() = λp q. p q p

h t. ¬(h :: t = [])

h t. head (h :: t) = h

(¬T F) (¬F T)

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

x s. Set.∪ (Set.insert x Set.∅) s = Set.insert x s

(s. Set.∪ Set.∅ s = s) s. Set.∪ s Set.∅ = s

P. (x y. P x y) y x. P x y

s t u. Set.∪ (Set.∪ s t) u = Set.∪ s (Set.∪ t u)

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

length [] = 0 h t. length (h :: t) = Number.Natural.suc (length t)

toSet [] = Set.∅ h t. toSet (h :: t) = Set.insert h (toSet t)

P. P [] (a0 a1. P a1 P (a0 :: a1)) x. P x

NIL' CONS'.
    fn. fn [] = NIL' a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

(n. Number.Natural.+ 0 n = n) (m. Number.Natural.+ m 0 = m)
  (m n.
     Number.Natural.+ (Number.Natural.suc m) n =
     Number.Natural.suc (Number.Natural.+ m n))
  m n.
    Number.Natural.+ m (Number.Natural.suc n) =
    Number.Natural.suc (Number.Natural.+ m n)