Package list-append: The list append function
Information
name | list-append |
version | 1.28 |
description | The list append function |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
requires | bool natural set list-def list-thm list-dest list-length list-set |
show | Data.Bool Data.List Number.Natural Set |
Files
- Package tarball list-append-1.28.tgz
- Theory file list-append.thy (included in the package tarball)
Defined Constant
- Data
- List
- @
- List
Theorems
⊦ ∀l. [] @ l = l
⊦ ∀l. l @ [] = l
⊦ ∀l m. null (l @ m) ⇔ null l ∧ null m
⊦ ∀l m. length (l @ m) = length l + length m
⊦ ∀l1 l2. toSet (l1 @ l2) = toSet l1 ∪ toSet l2
⊦ ∀l h t. (h :: t) @ l = h :: t @ l
⊦ ∀l m n. l @ m @ n = (l @ m) @ n
⊦ ∀l m. head (l @ m) = if l = [] then head m else head l
⊦ ∀l m. l @ m = [] ⇔ l = [] ∧ m = []
Input Type Operators
- →
- bool
- Data
- List
- list
- List
- Number
- Natural
- natural
- Natural
- Set
- set
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- cond
- F
- T
- List
- ::
- []
- head
- length
- null
- toSet
- Bool
- Number
- Natural
- +
- suc
- zero
- Natural
- Set
- ∅
- insert
- ∪
Assumptions
⊦ T
⊦ ¬F ⇔ T
⊦ length [] = 0
⊦ toSet [] = ∅
⊦ F ⇔ ∀p. p
⊦ (¬) = λp. p ⇒ F
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀t. (T ⇔ t) ⇔ t
⊦ ∀t. F ∧ t ⇔ F
⊦ ∀t. T ∧ t ⇔ t
⊦ ∀t. t ∧ t ⇔ t
⊦ ∀n. 0 + n = n
⊦ ∀s. ∅ ∪ s = s
⊦ ∀t. (F ⇔ t) ⇔ ¬t
⊦ ∀l. null l ⇔ l = []
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t1 t2. (if F then t1 else t2) = t2
⊦ ∀t1 t2. (if T then t1 else t2) = t1
⊦ ∀h t. ¬(h :: t = [])
⊦ ∀h t. head (h :: t) = h
⊦ ∀h t. length (h :: t) = suc (length t)
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀h t. toSet (h :: t) = insert h (toSet t)
⊦ ∀x s. insert x ∅ ∪ s = insert x s
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀p. (∀x y. p x y) ⇔ ∀y x. p x y
⊦ ∀s t u. s ∪ t ∪ u = s ∪ (t ∪ u)
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀P. P [] ∧ (∀a0 a1. P a1 ⇒ P (a0 :: a1)) ⇒ ∀x. P x
⊦ ∀NIL' CONS'.
∃fn. fn [] = NIL' ∧ ∀a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)