Package list-append-def: Definition of appending lists
Information
name | list-append-def |
version | 1.46 |
description | Definition of appending lists |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2014-06-12 |
requires | bool list-def |
show | Data.Bool Data.List |
Files
- Package tarball list-append-def-1.46.tgz
- Theory source file list-append-def.thy (included in the package tarball)
Defined Constants
- Data
- List
- @
- concat
- List
Theorems
⊦ concat [] = []
⊦ ∀l. [] @ l = l
⊦ ∀h t. concat (h :: t) = h @ concat t
⊦ ∀l h t. (h :: t) @ l = h :: t @ l
External Type Operators
- →
- bool
- Data
- List
- list
- List
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ⊤
- List
- ::
- []
- Bool
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀r. (∀x. ∃y. r x y) ⇔ ∃f. ∀x. r x (f x)
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)