name | list-append-thm |
version | 1.6 |
description | list-append-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-07-25 |
show | Data.Bool |
⊦ ∀l. Data.List.@ l Data.List.[] = l
⊦ ∀l m.
Data.List.null (Data.List.@ l m) ⇔ Data.List.null l ∧ Data.List.null m
⊦ ∀l m.
Data.List.length (Data.List.@ l m) =
Number.Natural.+ (Data.List.length l) (Data.List.length m)
⊦ ∀l1 l2.
Data.List.toSet (Data.List.@ l1 l2) =
Set.∪ (Data.List.toSet l1) (Data.List.toSet l2)
⊦ ∀l m n. Data.List.@ l (Data.List.@ m n) = Data.List.@ (Data.List.@ l m) n
⊦ ∀l m.
Data.List.head (Data.List.@ l m) =
if l = Data.List.[] then Data.List.head m else Data.List.head l
⊦ ∀l m.
Data.List.@ l m = Data.List.[] ⇔ l = Data.List.[] ∧ m = Data.List.[]
⊦ T
⊦ F ⇔ ∀p. p
⊦ (~) = λp. p ⇒ F
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀l. Data.List.null l ⇔ l = Data.List.[]
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀h t. ¬(Data.List.:: h t = Data.List.[])
⊦ ∀h t. Data.List.head (Data.List.:: h t) = h
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀x s. Set.∪ (Set.insert x Set.∅) s = Set.insert x s
⊦ (∀s. Set.∪ Set.∅ s = s) ∧ ∀s. Set.∪ s Set.∅ = s
⊦ ∀P. (∀x y. P x y) ⇔ ∀y x. P x y
⊦ ∀s t u. Set.∪ (Set.∪ s t) u = Set.∪ s (Set.∪ t u)
⊦ ∀t1 t2. (if T then t1 else t2) = t1 ∧ (if F then t1 else t2) = t2
⊦ Data.List.length Data.List.[] = 0 ∧
∀h t.
Data.List.length (Data.List.:: h t) =
Number.Natural.suc (Data.List.length t)
⊦ Data.List.toSet Data.List.[] = Set.∅ ∧
∀h t.
Data.List.toSet (Data.List.:: h t) = Set.insert h (Data.List.toSet t)
⊦ ∀P. P Data.List.[] ∧ (∀a0 a1. P a1 ⇒ P (Data.List.:: a0 a1)) ⇒ ∀x. P x
⊦ (∀l. Data.List.@ Data.List.[] l = l) ∧
∀l h t.
Data.List.@ (Data.List.:: h t) l = Data.List.:: h (Data.List.@ t l)
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ (∀n. Number.Natural.+ 0 n = n) ∧ (∀m. Number.Natural.+ m 0 = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)