name | list-filter |
version | 1.0 |
description | Definitions and theorems about the list filter function |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
show | Data.Bool Data.List Function |
⊦ ∀P l1 l2. filter P (l1 @ l2) = filter P l1 @ filter P l2
⊦ ∀P f l. filter P (map f l) = map f (filter (P o f) l)
⊦ (∀P. filter P [] = []) ∧
∀h P t. filter P (h :: t) = (if P h then h :: filter P t else filter P t)
⊦ T
⊦ F ⇔ ∀p. p
⊦ (¬) = λp. p ⇒ F
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀f g x. (f o g) x = f (g x)
⊦ ∀t1 t2. (if T then t1 else t2) = t1 ∧ (if F then t1 else t2) = t2
⊦ ∀P. P [] ∧ (∀a0 a1. P a1 ⇒ P (a0 :: a1)) ⇒ ∀x. P x
⊦ ∀P c x y. P (if c then x else y) ⇔ (c ⇒ P x) ∧ (¬c ⇒ P y)
⊦ ∀NIL' CONS'.
∃fn. fn [] = NIL' ∧ ∀a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)
⊦ (∀l. [] @ l = l) ∧ ∀h t l. (h :: t) @ l = h :: t @ l
⊦ (∀f. map f [] = []) ∧ ∀f h t. map f (h :: t) = f h :: map f t