Package list-filter-def: list-filter-def

Information

namelist-filter-def
version1.0
descriptionlist-filter-def
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-03-15
showData.Bool

Files

Defined Constant

Theorem

(P. Data.List.filter P Data.List.[] = Data.List.[])
  h P t.
    Data.List.filter P (Data.List.:: h t) =
    (if P h then Data.List.:: h (Data.List.filter P t)
     else Data.List.filter P t)

Input Type Operators

Input Constants

Assumptions

T

() = λP. P ((select) P)

() = λP. P = λx. T

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

NIL' CONS'.
    fn.
      fn Data.List.[] = NIL'
      a0 a1. fn (Data.List.:: a0 a1) = CONS' a0 a1 (fn a1)