Package list-filter-def: Definition of the list filter function
Information
name | list-filter-def |
version | 1.43 |
description | Definition of the list filter function |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2012-12-02 |
requires | bool list-def |
show | Data.Bool Data.List |
Files
- Package tarball list-filter-def-1.43.tgz
- Theory source file list-filter-def.thy (included in the package tarball)
Defined Constant
- Data
- List
- filter
- List
Theorems
⊦ ∀p. filter p [] = []
⊦ ∀p h t. filter p (h :: t) = if p h then h :: filter p t else filter p t
External Type Operators
- →
- bool
- Data
- List
- list
- List
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- cond
- ⊤
- List
- ::
- []
- Bool
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)