Package list-filter-thm: list-filter-thm

Information

namelist-filter-thm
version1.0
descriptionlist-filter-thm
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-03-15
showData.Bool

Files

Theorems

P l1 l2.
    Data.List.filter P (Data.List.@ l1 l2) =
    Data.List.@ (Data.List.filter P l1) (Data.List.filter P l2)

P f l.
    Data.List.filter P (Data.List.map f l) =
    Data.List.map f (Data.List.filter (Function.o P f) l)

Input Type Operators

Input Constants

Assumptions

T

F p. p

(¬) = λp. p F

t. (x. t) t

() = λP. P = λx. T

x. x = x T

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f T T

f g x. Function.o f g x = f (g x)

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

P. P Data.List.[] (a0 a1. P a1 P (Data.List.:: a0 a1)) x. P x

P c x y. P (if c then x else y) (c P x) (¬c P y)

(l. Data.List.@ Data.List.[] l = l)
  h t l.
    Data.List.@ (Data.List.:: h t) l = Data.List.:: h (Data.List.@ t l)

(f. Data.List.map f Data.List.[] = Data.List.[])
  f h t.
    Data.List.map f (Data.List.:: h t) =
    Data.List.:: (f h) (Data.List.map f t)

(P. Data.List.filter P Data.List.[] = Data.List.[])
  h P t.
    Data.List.filter P (Data.List.:: h t) =
    (if P h then Data.List.:: h (Data.List.filter P t)
     else Data.List.filter P t)