Package list-filter-thm: list-filter-thm
Information
name | list-filter-thm |
version | 1.12 |
description | list-filter-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball list-filter-thm-1.12.tgz
- Theory file list-filter-thm.thy (included in the package tarball)
Theorems
⊦ ∀p l.
Number.Natural.≤ (Data.List.length (Data.List.filter p l))
(Data.List.length l)
⊦ ∀p l. Set.⊆ (Data.List.toSet (Data.List.filter p l)) (Data.List.toSet l)
⊦ ∀P l1 l2.
Data.List.filter P (Data.List.@ l1 l2) =
Data.List.@ (Data.List.filter P l1) (Data.List.filter P l2)
⊦ ∀P f l.
Data.List.filter P (Data.List.map f l) =
Data.List.map f (Data.List.filter (Function.∘ P f) l)
Input Type Operators
- →
- bool
- Data
- List
- Data.List.list
- List
- Number
- Natural
- Number.Natural.natural
- Natural
- Set
- Set.set
Input Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- cond
- F
- T
- List
- Data.List.::
- Data.List.@
- Data.List.[]
- Data.List.filter
- Data.List.length
- Data.List.map
- Data.List.toSet
- Bool
- Function
- Function.∘
- Number
- Natural
- Number.Natural.≤
- Number.Natural.suc
- Number.Natural.zero
- Natural
- Set
- Set.∅
- Set.insert
- Set.⊆
- Set.∪
Assumptions
⊦ T
⊦ ∀n. Number.Natural.≤ n n
⊦ ∀s. Set.⊆ s s
⊦ F ⇔ ∀p. p
⊦ ∀n. Number.Natural.≤ n (Number.Natural.suc n)
⊦ (¬) = λp. p ⇒ F
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀x s. Set.∪ (Set.insert x Set.∅) s = Set.insert x s
⊦ ∀m n.
Number.Natural.≤ (Number.Natural.suc m) (Number.Natural.suc n) ⇔
Number.Natural.≤ m n
⊦ ∀f g x. Function.∘ f g x = f (g x)
⊦ ∀m n p.
Number.Natural.≤ m n ∧ Number.Natural.≤ n p ⇒ Number.Natural.≤ m p
⊦ ∀s t u. Set.⊆ s t ∧ Set.⊆ t u ⇒ Set.⊆ s u
⊦ ∀t1 t2. (if T then t1 else t2) = t1 ∧ (if F then t1 else t2) = t2
⊦ Data.List.length Data.List.[] = 0 ∧
∀h t.
Data.List.length (Data.List.:: h t) =
Number.Natural.suc (Data.List.length t)
⊦ Data.List.toSet Data.List.[] = Set.∅ ∧
∀h t.
Data.List.toSet (Data.List.:: h t) = Set.insert h (Data.List.toSet t)
⊦ (∀s t. Set.⊆ s (Set.∪ s t)) ∧ ∀s t. Set.⊆ s (Set.∪ t s)
⊦ ∀s t u. Set.⊆ (Set.∪ s t) u ⇔ Set.⊆ s u ∧ Set.⊆ t u
⊦ ∀P. P Data.List.[] ∧ (∀a0 a1. P a1 ⇒ P (Data.List.:: a0 a1)) ⇒ ∀x. P x
⊦ ∀P c x y. P (if c then x else y) ⇔ (c ⇒ P x) ∧ (¬c ⇒ P y)
⊦ (∀l. Data.List.@ Data.List.[] l = l) ∧
∀l h t.
Data.List.@ (Data.List.:: h t) l = Data.List.:: h (Data.List.@ t l)
⊦ (∀f. Data.List.map f Data.List.[] = Data.List.[]) ∧
∀f h t.
Data.List.map f (Data.List.:: h t) =
Data.List.:: (f h) (Data.List.map f t)
⊦ (∀P. Data.List.filter P Data.List.[] = Data.List.[]) ∧
∀P h t.
Data.List.filter P (Data.List.:: h t) =
if P h then Data.List.:: h (Data.List.filter P t)
else Data.List.filter P t
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)