Package list-interval-def: list-interval-def
Information
name | list-interval-def |
version | 1.15 |
description | list-interval-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball list-interval-def-1.15.tgz
- Theory file list-interval-def.thy (included in the package tarball)
Defined Constant
- Data
- List
- Data.List.interval
- List
Theorem
⊦ (∀m. Data.List.interval m 0 = Data.List.[]) ∧
∀m n.
Data.List.interval m (Number.Natural.suc n) =
Data.List.:: m (Data.List.interval (Number.Natural.suc m) n)
Input Type Operators
- →
- bool
- Data
- List
- Data.List.list
- List
- Number
- Natural
- Number.Natural.natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- T
- List
- Data.List.::
- Data.List.[]
- Bool
- Number
- Natural
- Number.Natural.suc
- Number.Natural.zero
- Natural
Assumptions
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀e f. ∃fn. fn 0 = e ∧ ∀n. fn (Number.Natural.suc n) = f (fn n) n