Package list-interval-thm: list-interval-thm
Information
name | list-interval-thm |
version | 1.10 |
description | list-interval-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball list-interval-thm-1.10.tgz
- Theory file list-interval-thm.thy (included in the package tarball)
Theorems
⊦ ∀m n. Data.List.length (Data.List.interval m n) = n
⊦ ∀m n i.
Number.Natural.< i n ⇒
Data.List.nth i (Data.List.interval m n) = Number.Natural.+ m i
Input Type Operators
- →
- bool
- Data
- List
- Data.List.list
- List
- Number
- Natural
- Number.Natural.natural
- Natural
Input Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- F
- T
- List
- Data.List.::
- Data.List.[]
- Data.List.interval
- Data.List.length
- Data.List.nth
- Bool
- Number
- Natural
- Number.Natural.+
- Number.Natural.<
- Number.Natural.suc
- Number.Natural.zero
- Natural
Assumptions
⊦ T
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀m. Number.Natural.+ m 0 = m
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀h t. Data.List.nth 0 (Data.List.:: h t) = h
⊦ ∀m. m = 0 ∨ ∃n. m = Number.Natural.suc n
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)
⊦ ∀m n. Number.Natural.suc m = Number.Natural.suc n ⇔ m = n
⊦ ∀m n.
Number.Natural.< (Number.Natural.suc m) (Number.Natural.suc n) ⇔
Number.Natural.< m n
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀P. (∀x y. P x y) ⇔ ∀y x. P x y
⊦ Data.List.length Data.List.[] = 0 ∧
∀h t.
Data.List.length (Data.List.:: h t) =
Number.Natural.suc (Data.List.length t)
⊦ ∀P. P 0 ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ ∀h t n.
Number.Natural.< n (Data.List.length t) ⇒
Data.List.nth (Number.Natural.suc n) (Data.List.:: h t) =
Data.List.nth n t
⊦ (∀n. Number.Natural.+ 0 n = n) ∧
∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)
⊦ (∀m. Data.List.interval m 0 = Data.List.[]) ∧
∀m n.
Data.List.interval m (Number.Natural.suc n) =
Data.List.:: m (Data.List.interval (Number.Natural.suc m) n)
⊦ (∀m. Number.Natural.< m 0 ⇔ F) ∧
∀m n.
Number.Natural.< m (Number.Natural.suc n) ⇔
m = n ∨ Number.Natural.< m n
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)