Package list-interval-thm: Properties of the list interval function
Information
name | list-interval-thm |
version | 1.39 |
description | Properties of the list interval function |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2012-03-24 |
requires | bool list-interval-def list-length list-nth natural |
show | Data.Bool Data.List Number.Natural |
Files
- Package tarball list-interval-thm-1.39.tgz
- Theory file list-interval-thm.thy (included in the package tarball)
Theorems
⊦ ∀m n. length (interval m n) = n
⊦ ∀m n i. i < n ⇒ nth (interval m n) i = m + i
Input Type Operators
- →
- bool
- Data
- List
- list
- List
- Number
- Natural
- natural
- Natural
Input Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- ⊥
- ⊤
- List
- ::
- []
- interval
- length
- nth
- Bool
- Number
- Natural
- +
- <
- suc
- zero
- Natural
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ length [] = 0
⊦ ∀t. t ⇒ t
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. ⊥ ∧ t ⇔ ⊥
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. ⊥ ⇒ t ⇔ ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀m. m < 0 ⇔ ⊥
⊦ ∀m. m + 0 = m
⊦ ∀m. interval m 0 = []
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀h t. nth (h :: t) 0 = h
⊦ ∀h t. length (h :: t) = suc (length t)
⊦ ∀m. m = 0 ∨ ∃n. m = suc n
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀m n. m + suc n = suc (m + n)
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀m n. suc m = suc n ⇔ m = n
⊦ ∀m n. suc m < suc n ⇔ m < n
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. interval m (suc n) = m :: interval (suc m) n
⊦ ∀p. (∀x y. p x y) ⇔ ∀y x. p x y
⊦ ∀P. P 0 ∧ (∀n. P n ⇒ P (suc n)) ⇒ ∀n. P n
⊦ ∀h t n. n < length t ⇒ nth (h :: t) (suc n) = nth t n