Package list-map-def: Definition of the list map function
Information
name | list-map-def |
version | 1.48 |
description | Definition of the list map function |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2014-11-04 |
checksum | d77d7b0a2a18aef6471919aa059b4727c2ea41db |
requires | bool list-def |
show | Data.Bool Data.List |
Files
- Package tarball list-map-def-1.48.tgz
- Theory source file list-map-def.thy (included in the package tarball)
Defined Constant
- Data
- List
- map
- List
Theorems
⊦ ∀f. map f [] = []
⊦ ∀f h t. map f (h :: t) = f h :: map f t
External Type Operators
- →
- bool
- Data
- List
- list
- List
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ⊤
- List
- ::
- []
- Bool
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)