Package list-map-thm: list-map-thm
Information
name | list-map-thm |
version | 1.12 |
description | list-map-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball list-map-thm-1.12.tgz
- Theory file list-map-thm.thy (included in the package tarball)
Theorems
⊦ Data.List.map Function.id = Function.id
⊦ ∀l. Data.List.map (λx. x) l = l
⊦ ∀l f. Data.List.length (Data.List.map f l) = Data.List.length l
⊦ ∀f l.
Data.List.toSet (Data.List.map f l) = Set.image f (Data.List.toSet l)
⊦ ∀f l. Data.List.map f l = Data.List.[] ⇔ l = Data.List.[]
⊦ ∀f g l.
Data.List.map (Function.∘ g f) l = Data.List.map g (Data.List.map f l)
⊦ ∀f l1 l2.
Data.List.map f (Data.List.@ l1 l2) =
Data.List.@ (Data.List.map f l1) (Data.List.map f l2)
⊦ ∀f. (∀m. ∃l. Data.List.map f l = m) ⇔ ∀y. ∃x. f x = y
⊦ ∀f.
(∀l m. Data.List.map f l = Data.List.map f m ⇒ l = m) ⇔
∀x y. f x = f y ⇒ x = y
Input Type Operators
- →
- bool
- Data
- List
- Data.List.list
- List
- Number
- Natural
- Number.Natural.natural
- Natural
- Set
- Set.set
Input Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- F
- T
- List
- Data.List.::
- Data.List.@
- Data.List.[]
- Data.List.length
- Data.List.map
- Data.List.toSet
- Bool
- Function
- Function.id
- Function.∘
- Number
- Natural
- Number.Natural.suc
- Number.Natural.zero
- Natural
- Set
- Set.∅
- Set.image
- Set.insert
Assumptions
⊦ T
⊦ Function.id = λx. x
⊦ F ⇔ ∀p. p
⊦ ∀x. Function.id x = x
⊦ ∀t. t ∨ ¬t
⊦ (¬) = λp. p ⇒ F
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ ∀h t. ¬(Data.List.:: h t = Data.List.[])
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀P. ¬(∀x. P x) ⇔ ∃x. ¬P x
⊦ ∀P. ¬(∃x. P x) ⇔ ∀x. ¬P x
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀f g x. Function.∘ f g x = f (g x)
⊦ ∀f g. f = g ⇔ ∀x. f x = g x
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀P Q. P ∨ (∃x. Q x) ⇔ ∃x. P ∨ Q x
⊦ ∀P Q. (∃x. P x) ∧ Q ⇔ ∃x. P x ∧ Q
⊦ ∀P Q. (∃x. P x) ⇒ Q ⇔ ∀x. P x ⇒ Q
⊦ ∀P. (∀x. ∃y. P x y) ⇔ ∃y. ∀x. P x (y x)
⊦ Data.List.length Data.List.[] = 0 ∧
∀h t.
Data.List.length (Data.List.:: h t) =
Number.Natural.suc (Data.List.length t)
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ Data.List.toSet Data.List.[] = Set.∅ ∧
∀h t.
Data.List.toSet (Data.List.:: h t) = Set.insert h (Data.List.toSet t)
⊦ ∀P. P Data.List.[] ∧ (∀a0 a1. P a1 ⇒ P (Data.List.:: a0 a1)) ⇒ ∀x. P x
⊦ ∀h1 h2 t1 t2. Data.List.:: h1 t1 = Data.List.:: h2 t2 ⇔ h1 = h2 ∧ t1 = t2
⊦ (∀l. Data.List.@ Data.List.[] l = l) ∧
∀l h t.
Data.List.@ (Data.List.:: h t) l = Data.List.:: h (Data.List.@ t l)
⊦ (∀f. Data.List.map f Data.List.[] = Data.List.[]) ∧
∀f h t.
Data.List.map f (Data.List.:: h t) =
Data.List.:: (f h) (Data.List.map f t)
⊦ (∀f. Set.image f Set.∅ = Set.∅) ∧
∀f x s. Set.image f (Set.insert x s) = Set.insert (f x) (Set.image f s)
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)
⊦ ∀p q r.
(p ∨ q ⇔ q ∨ p) ∧ ((p ∨ q) ∨ r ⇔ p ∨ q ∨ r) ∧ (p ∨ q ∨ r ⇔ q ∨ p ∨ r) ∧
(p ∨ p ⇔ p) ∧ (p ∨ p ∨ q ⇔ p ∨ q)