Package list-nth-def: Definition of the list nth function
Information
name | list-nth-def |
version | 1.24 |
description | Definition of the list nth function |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-11-27 |
requires | bool natural list-dest |
show | Data.Bool Data.List Number.Natural |
Files
- Package tarball list-nth-def-1.24.tgz
- Theory file list-nth-def.thy (included in the package tarball)
Defined Constant
- Data
- List
- nth
- List
Theorems
⊦ ∀h t. nth 0 (h :: t) = h
⊦ ∀h t n. n < length t ⇒ nth (suc n) (h :: t) = nth n t
Input Type Operators
- →
- bool
- Data
- List
- list
- List
- Number
- Natural
- natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- T
- List
- ::
- head
- length
- tail
- Bool
- Number
- Natural
- <
- suc
- zero
- Natural
Assumptions
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀t. t ⇒ T ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀h t. head (h :: t) = h
⊦ ∀h t. tail (h :: t) = t
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ (∃!) = λP. (∃) P ∧ ∀x y. P x ∧ P y ⇒ x = y
⊦ ∀e f. ∃!fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n