Package list-nub-def: Definition of the list nub function
Information
name | list-nub-def |
version | 1.29 |
description | Definition of the list nub function |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2012-01-28 |
requires | bool list-def |
show | Data.Bool Data.List |
Files
- Package tarball list-nub-def-1.29.tgz
- Theory file list-nub-def.thy (included in the package tarball)
Defined Constants
- Data
- List
- nub
- nubReverse
- List
Theorems
⊦ nubReverse [] = []
⊦ ∀l. nub l = reverse (nubReverse (reverse l))
⊦ ∀h t.
nubReverse (h :: t) =
if member h t then nubReverse t else h :: nubReverse t
Input Type Operators
- →
- bool
- Data
- List
- list
- List
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- cond
- T
- List
- ::
- []
- member
- reverse
- Bool
Assumptions
⊦ T
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀NIL' CONS'.
∃fn. fn [] = NIL' ∧ ∀a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)