Package list-nub-def: Definition of the list nub function
Information
name | list-nub-def |
version | 1.49 |
description | Definition of the list nub function |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2014-01-13 |
requires | bool list-def list-reverse |
show | Data.Bool Data.List |
Files
- Package tarball list-nub-def-1.49.tgz
- Theory source file list-nub-def.thy (included in the package tarball)
Defined Constants
- Data
- List
- nub
- nubReverse
- List
Theorems
⊦ nubReverse [] = []
⊦ ∀l. nub l = reverse (nubReverse (reverse l))
⊦ ∀h t.
nubReverse (h :: t) =
if member h t then nubReverse t else h :: nubReverse t
External Type Operators
- →
- bool
- Data
- List
- list
- List
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- cond
- ⊤
- List
- ::
- []
- member
- reverse
- Bool
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀r. (∀x. ∃y. r x y) ⇔ ∃f. ∀x. r x (f x)
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)