Package list-nub-thm: list-nub-thm
Information
name | list-nub-thm |
version | 1.15 |
description | list-nub-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball list-nub-thm-1.15.tgz
- Theory file list-nub-thm.thy (included in the package tarball)
Theorems
⊦ ∀l. Data.List.nub (Data.List.nub l) = Data.List.nub l
⊦ ∀l.
Data.List.nubReverse (Data.List.nubReverse l) = Data.List.nubReverse l
⊦ ∀l. Data.List.toSet (Data.List.nub l) = Data.List.toSet l
⊦ ∀l. Data.List.toSet (Data.List.nubReverse l) = Data.List.toSet l
⊦ ∀l.
Number.Natural.≤ (Data.List.length (Data.List.nub l))
(Data.List.length l)
⊦ ∀l.
Number.Natural.≤ (Data.List.length (Data.List.nubReverse l))
(Data.List.length l)
⊦ ∀l x. Data.List.member x (Data.List.nub l) ⇔ Data.List.member x l
⊦ ∀l x. Data.List.member x (Data.List.nubReverse l) ⇔ Data.List.member x l
Input Type Operators
- →
- bool
- Data
- List
- Data.List.list
- List
- Number
- Natural
- Number.Natural.natural
- Natural
- Set
- Set.set
Input Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∨
- ¬
- cond
- F
- T
- List
- Data.List.::
- Data.List.[]
- Data.List.length
- Data.List.member
- Data.List.nub
- Data.List.nubReverse
- Data.List.reverse
- Data.List.toSet
- Bool
- Number
- Natural
- Number.Natural.≤
- Number.Natural.suc
- Number.Natural.zero
- Natural
- Set
- Set.∈
Assumptions
⊦ T
⊦ ∀n. Number.Natural.≤ n n
⊦ F ⇔ ∀p. p
⊦ ∀t. t ∨ ¬t
⊦ (¬) = λp. p ⇒ F
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀l. Data.List.reverse (Data.List.reverse l) = l
⊦ ∀l. Data.List.length (Data.List.reverse l) = Data.List.length l
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ ∀l.
Data.List.nub l =
Data.List.reverse (Data.List.nubReverse (Data.List.reverse l))
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀x l. Data.List.member x l ⇔ Set.∈ x (Data.List.toSet l)
⊦ ∀l x. Data.List.member x (Data.List.reverse l) ⇔ Data.List.member x l
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀m n.
Number.Natural.≤ (Number.Natural.suc m) (Number.Natural.suc n) ⇔
Number.Natural.≤ m n
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀s t. s = t ⇔ ∀x. Set.∈ x s ⇔ Set.∈ x t
⊦ ∀t1 t2. (if T then t1 else t2) = t1 ∧ (if F then t1 else t2) = t2
⊦ Data.List.length Data.List.[] = 0 ∧
∀h t.
Data.List.length (Data.List.:: h t) =
Number.Natural.suc (Data.List.length t)
⊦ ∀P. P Data.List.[] ∧ (∀a0 a1. P a1 ⇒ P (Data.List.:: a0 a1)) ⇒ ∀x. P x
⊦ Data.List.nubReverse Data.List.[] = Data.List.[] ∧
∀h t.
Data.List.nubReverse (Data.List.:: h t) =
if Data.List.member h t then Data.List.nubReverse t
else Data.List.:: h (Data.List.nubReverse t)
⊦ (∀x. Data.List.member x Data.List.[] ⇔ F) ∧
∀x h t.
Data.List.member x (Data.List.:: h t) ⇔ x = h ∨ Data.List.member x t
⊦ (∀m. Number.Natural.≤ m 0 ⇔ m = 0) ∧
∀m n.
Number.Natural.≤ m (Number.Natural.suc n) ⇔
m = Number.Natural.suc n ∨ Number.Natural.≤ m n
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)