name | list-quant-def |
version | 1.0 |
description | list-quant-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ (∀P. Data.List.all P Data.List.[] ⇔ T) ∧
∀h P t. Data.List.all P (Data.List.:: h t) ⇔ P h ∧ Data.List.all P t
⊦ (∀P. Data.List.exists P Data.List.[] ⇔ F) ∧
∀h P t.
Data.List.exists P (Data.List.:: h t) ⇔ P h ∨ Data.List.exists P t
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λP. P = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀NIL' CONS'.
∃fn.
fn Data.List.[] = NIL' ∧
∀a0 a1. fn (Data.List.:: a0 a1) = CONS' a0 a1 (fn a1)