name | list-quant-thm |
version | 1.9 |
description | list-quant-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-07-18 |
show | Data.Bool |
⊦ ∀l. Data.List.all (λx. T) l
⊦ ∀P l. ¬Data.List.all P l ⇔ Data.List.exists (λx. ¬P x) l
⊦ ∀P l. ¬Data.List.exists P l ⇔ Data.List.all (λx. ¬P x) l
⊦ ∀P f l.
Data.List.all P (Data.List.map f l) ⇔ Data.List.all (Function.o P f) l
⊦ ∀P f l.
Data.List.exists P (Data.List.map f l) ⇔
Data.List.exists (Function.o P f) l
⊦ ∀P l. (∀x. Data.List.all (P x) l) ⇔ Data.List.all (λs. ∀x. P x s) l
⊦ ∀P l. (∃x. Data.List.exists (P x) l) ⇔ Data.List.exists (λs. ∃x. P x s) l
⊦ ∀P l1 l2.
Data.List.all P (Data.List.@ l1 l2) ⇔
Data.List.all P l1 ∧ Data.List.all P l2
⊦ ∀P Q l. (∀x. P x ⇒ Q x) ⇒ Data.List.all P l ⇒ Data.List.all Q l
⊦ ∀f g l.
Data.List.all (λx. f x = g x) l ⇒ Data.List.map f l = Data.List.map g l
⊦ ∀P Q l.
Data.List.all P l ∧ Data.List.all Q l ⇔ Data.List.all (λx. P x ∧ Q x) l
⊦ ∀P Q l.
Data.List.all (λx. P x ⇒ Q x) l ∧ Data.List.all P l ⇒ Data.List.all Q l
⊦ T
⊦ ∀x. Function.id x = x
⊦ ∀a. ∃x. x = a
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (∃x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀f y. (let x ← y ∈ f x) = f y
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀P. ¬(∀x. P x) ⇔ ∃x. ¬P x
⊦ ∀P. ¬(∃x. P x) ⇔ ∀x. ¬P x
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀f g x. Function.o f g x = f (g x)
⊦ ∀f g. f = g ⇔ ∀x. f x = g x
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀P Q. P ∧ (∃x. Q x) ⇔ ∃x. P ∧ Q x
⊦ ∀P Q. P ∨ (∃x. Q x) ⇔ ∃x. P ∨ Q x
⊦ ∀P Q. (∀x. P x ⇒ Q) ⇔ (∃x. P x) ⇒ Q
⊦ ∀P Q. (∃x. P x) ∧ Q ⇔ ∃x. P x ∧ Q
⊦ ∀P Q. (∃x. P x) ∨ Q ⇔ ∃x. P x ∨ Q
⊦ ∀t1 t2 t3. t1 ∧ t2 ∧ t3 ⇔ (t1 ∧ t2) ∧ t3
⊦ ∀P. (∀x. ∃y. P x y) ⇔ ∃y. ∀x. P x (y x)
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀P Q. (∀x. P x ∧ Q x) ⇔ (∀x. P x) ∧ ∀x. Q x
⊦ ∀P Q. (∃x. P x ∨ Q x) ⇔ (∃x. P x) ∨ ∃x. Q x
⊦ ∀P Q. (∃x. P x) ∨ (∃x. Q x) ⇔ ∃x. P x ∨ Q x
⊦ ∀P. P Data.List.[] ∧ (∀a0 a1. P a1 ⇒ P (Data.List.:: a0 a1)) ⇒ ∀x. P x
⊦ (∀l. Data.List.@ Data.List.[] l = l) ∧
∀l h t.
Data.List.@ (Data.List.:: h t) l = Data.List.:: h (Data.List.@ t l)
⊦ ∀t1 t2. (¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2) ∧ (¬(t1 ∨ t2) ⇔ ¬t1 ∧ ¬t2)
⊦ (∀f. Data.List.map f Data.List.[] = Data.List.[]) ∧
∀f h t.
Data.List.map f (Data.List.:: h t) =
Data.List.:: (f h) (Data.List.map f t)
⊦ (∀P. Data.List.all P Data.List.[] ⇔ T) ∧
∀P h t. Data.List.all P (Data.List.:: h t) ⇔ P h ∧ Data.List.all P t
⊦ (∀P. Data.List.exists P Data.List.[] ⇔ F) ∧
∀P h t.
Data.List.exists P (Data.List.:: h t) ⇔ P h ∨ Data.List.exists P t
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)
⊦ ∀p q r.
(p ∧ q ⇔ q ∧ p) ∧ ((p ∧ q) ∧ r ⇔ p ∧ q ∧ r) ∧ (p ∧ q ∧ r ⇔ q ∧ p ∧ r) ∧
(p ∧ p ⇔ p) ∧ (p ∧ p ∧ q ⇔ p ∧ q)
⊦ ∀p q r.
(p ∨ q ⇔ q ∨ p) ∧ ((p ∨ q) ∨ r ⇔ p ∨ q ∨ r) ∧ (p ∨ q ∨ r ⇔ q ∨ p ∨ r) ∧
(p ∨ p ⇔ p) ∧ (p ∨ p ∨ q ⇔ p ∨ q)