Package list-replicate-def: Definition of the list replicate function
Information
name | list-replicate-def |
version | 1.53 |
description | Definition of the list replicate function |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2014-11-04 |
checksum | ff13a038473f08517db64148ff98d1e34b8bfe02 |
requires | bool list-def natural |
show | Data.Bool Data.List Number.Natural |
Files
- Package tarball list-replicate-def-1.53.tgz
- Theory source file list-replicate-def.thy (included in the package tarball)
Defined Constant
- Data
- List
- replicate
- List
Theorems
⊦ ∀x. replicate x 0 = []
⊦ ∀x n. replicate x (suc n) = x :: replicate x n
External Type Operators
- →
- bool
- Data
- List
- list
- List
- Number
- Natural
- natural
- Natural
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ⊤
- List
- ::
- []
- Bool
- Number
- Natural
- suc
- zero
- Natural
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ (∃!) = λp. (∃) p ∧ ∀x y. p x ∧ p y ⇒ x = y
⊦ ∀e f. ∃!fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n