Package list-set: Viewing lists as finite sets
Information
name | list-set |
version | 1.12 |
description | Viewing lists as finite sets |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
show | Data.Bool Data.List |
Files
- Package tarball list-set-1.12.tgz
- Theory file list-set.thy (included in the package tarball)
Defined Constants
- Data
- List
- fromSet
- toSet
- List
Theorems
⊦ ∀l. Set.finite (toSet l)
⊦ ∀l. Number.Natural.≤ (Set.size (toSet l)) (length l)
⊦ ∀l. toSet l = Set.∅ ⇔ l = []
⊦ ∀s. Set.finite s ⇒ toSet (fromSet s) = s
⊦ ∀s. Set.finite s ⇒ length (fromSet s) = Set.size s
⊦ ∀s.
Set.finite s ⇒ toSet (fromSet s) = s ∧ length (fromSet s) = Set.size s
⊦ toSet [] = Set.∅ ∧ ∀h t. toSet (h :: t) = Set.insert h (toSet t)
Input Type Operators
- →
- bool
- Data
- List
- list
- List
- Number
- Natural
- Number.Natural.natural
- Natural
- Set
- Set.set
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- cond
- F
- T
- List
- ::
- []
- length
- Bool
- Number
- Natural
- Number.Natural.≤
- Number.Natural.suc
- Number.Natural.zero
- Natural
- Set
- Set.∅
- Set.finite
- Set.insert
- Set.∈
- Set.size
Assumptions
⊦ T
⊦ Set.finite Set.∅
⊦ Set.size Set.∅ = 0
⊦ ∀n. Number.Natural.≤ 0 n
⊦ ∀n. Number.Natural.≤ n n
⊦ F ⇔ ∀p. p
⊦ ∀n. Number.Natural.≤ n (Number.Natural.suc n)
⊦ (¬) = λp. p ⇒ F
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀h t. ¬(h :: t = [])
⊦ ∀x s. ¬(Set.insert x s = Set.∅)
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀s x. Set.finite (Set.insert x s) ⇔ Set.finite s
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀m n.
Number.Natural.≤ (Number.Natural.suc m) (Number.Natural.suc n) ⇔
Number.Natural.≤ m n
⊦ ∀m n p.
Number.Natural.≤ m n ∧ Number.Natural.≤ n p ⇒ Number.Natural.≤ m p
⊦ ∀t1 t2. (if T then t1 else t2) = t1 ∧ (if F then t1 else t2) = t2
⊦ length [] = 0 ∧ ∀h t. length (h :: t) = Number.Natural.suc (length t)
⊦ ∀P. P [] ∧ (∀a0 a1. P a1 ⇒ P (a0 :: a1)) ⇒ ∀x. P x
⊦ ∀P c x y. P (if c then x else y) ⇔ (c ⇒ P x) ∧ (¬c ⇒ P y)
⊦ ∀NIL' CONS'.
∃fn. fn [] = NIL' ∧ ∀a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)
⊦ Set.size Set.∅ = 0 ∧
∀x s.
Set.finite s ⇒
Set.size (Set.insert x s) =
if Set.∈ x s then Set.size s else Number.Natural.suc (Set.size s)
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀P.
P Set.∅ ∧
(∀x s. P s ∧ ¬Set.∈ x s ∧ Set.finite s ⇒ P (Set.insert x s)) ⇒
∀s. Set.finite s ⇒ P s
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)