Package list-set-thm: Properties of list to set conversions

Information

namelist-set-thm
version1.33
descriptionProperties of list to set conversions
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2012-04-05
requiresbool
list-def
list-dest
list-length
list-set-def
natural
set
showData.Bool
Data.List
Number.Natural
Set

Files

Theorems

l. finite (toSet l)

l. all (λx. ) l

l. size (toSet l) length l

l. all (λx. ) l null l

l. toSet l = null l

l. toSet l = l = []

s. finite s toSet (fromSet s) = s

s. finite s length (fromSet s) = size s

l x. member x l x toSet l

p l. ¬all p l exists (λx. ¬p x) l

p l. ¬exists p l all (λx. ¬p x) l

p l. ¬all (λx. ¬p x) l exists p l

p l. ¬exists (λx. ¬p x) l all p l

s. finite s x. member x (fromSet s) x s

p l. (x. member x l p x) all p l

p l. (x. member x l p x) exists p l

p l. all p l x. x toSet l p x

p l. exists p l x. x toSet l p x

p l. (x. all (p x) l) all (λy. x. p x y) l

p l. (x. exists (p x) l) exists (λy. x. p x y) l

p q l. all (λx. p x q x) l all p l all q l

p q l. all (λx. p x q x) l all p l all q l

p q l. (x. member x l p x q x) all p l all q l

p q l. (x. member x l p x q x) exists p l exists q l

Input Type Operators

Input Constants

Assumptions

null []

finite

¬

size = 0

toSet [] =

n. 0 n

n. n n

p. all p []

p. p

x. ¬member x []

x. ¬(x )

n. n suc n

p. ¬exists p []

(¬) = λp. p

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx.

t. ¬¬t t

t. ( t) t

t. t t

t. t t

t. t

t. t t

t. t

t. ( t) ¬t

t. t ¬t

l. null l l = []

h t. ¬null (h :: t)

() = λp q. p q p

x s. ¬(insert x s = )

s x. finite (insert x s) finite s

h t. length (h :: t) = suc (length t)

s. (x. x s) ¬(s = )

() = λp q. (λf. f p q) = λf. f

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

h t. toSet (h :: t) = insert h (toSet t)

t1 t2. ¬(t1 t2) t1 ¬t2

m n. suc m suc n m n

t1 t2. ¬(t1 t2) ¬t1 ¬t2

() = λp q. r. (p r) (q r) r

p. (x y. p x y) y x. p x y

p. (x y. p x y) y x. p x y

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q r. p q r p q r

m n p. m n n p m p

s. finite s toSet (fromSet s) = s length (fromSet s) = size s

p h t. all p (h :: t) p h all p t

p h t. exists p (h :: t) p h exists p t

x h t. member x (h :: t) x = h member x t

x y s. x insert y s x = y x s

p. p [] (h t. p t p (h :: t)) l. p l

x s.
    finite s size (insert x s) = if x s then size s else suc (size s)

p c x y. p (if c then x else y) (c p x) (¬c p y)