Package list-take-drop-def: list-take-drop-def
Information
name | list-take-drop-def |
version | 1.15 |
description | list-take-drop-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball list-take-drop-def-1.15.tgz
- Theory file list-take-drop-def.thy (included in the package tarball)
Defined Constants
- Data
- List
- Data.List.drop
- Data.List.take
- List
Theorems
⊦ (∀l. Data.List.drop 0 l = l) ∧
∀n h t.
Number.Natural.≤ n (Data.List.length t) ⇒
Data.List.drop (Number.Natural.suc n) (Data.List.:: h t) =
Data.List.drop n t
⊦ (∀l. Data.List.take 0 l = Data.List.[]) ∧
∀n h t.
Number.Natural.≤ n (Data.List.length t) ⇒
Data.List.take (Number.Natural.suc n) (Data.List.:: h t) =
Data.List.:: h (Data.List.take n t)
Input Type Operators
- →
- bool
- Data
- List
- Data.List.list
- List
- Number
- Natural
- Number.Natural.natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- F
- T
- List
- Data.List.::
- Data.List.[]
- Data.List.head
- Data.List.length
- Data.List.tail
- Bool
- Number
- Natural
- Number.Natural.≤
- Number.Natural.suc
- Number.Natural.zero
- Natural
Assumptions
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀h t. Data.List.head (Data.List.:: h t) = h
⊦ ∀h t. Data.List.tail (Data.List.:: h t) = t
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀e f. ∃fn. fn 0 = e ∧ ∀n. fn (Number.Natural.suc n) = f (fn n) n
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)